Skip to main content
Log in

Effects of Ce Content in Precursor Alloys on Catalytic Properties of CeO2 Nanorods

  • Advances in Surface Engineering
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, Al-Ce alloy ribbons with Ce content (at.%) ranging from 6% to 12% were prepared by a simple melt-spinning method. The microstructure, phase structure, porosity and catalytic CO oxidation activity of dealloyed and calcined ribbons were analyzed. The results revealed that all the CeO2 catalysts showed a nanorod framework structure, and the size of the CeO2 nanorods became finer with the decrease of Ce content in the precursors. The specific surface area was the largest and porous size was the smallest for dealloyed and calcined Al92Ce8 ribbons. The CeO2 nanorod prepared from the Al92Ce8 precursor exhibited the highest catalytic activity, with total CO conversion at 320°C. The larger specific surface area could provide more gas diffusion paths and richer reaction active sites for CO oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Wang, J. Shen, J. Huang, T. Xu, J. Zhu, Y. Zhu, and C. Li, Nanoscale 9, 16817 (2017).

    Article  Google Scholar 

  2. F. Zedan Abdallah, K. Polychronopoulou, A. Asifc, S.Y. AlQaradawib, and A.S. AlJaber, Surf. Coat. Technol. 354, 313 (2018).

    Article  Google Scholar 

  3. M. Jin, J.N. Park, J.K. Shon, J.H. Kim, Z. Li, Y.K. Park, and J.M. Kim, Catal. Today 185, 183 (2012).

    Article  Google Scholar 

  4. S. Royer and D. Duprez, ChemCatChem 3, 24 (2011).

    Article  Google Scholar 

  5. R.J. Farrauto and R.M. Heck, Catal. Today 55, 179 (2000).

    Article  Google Scholar 

  6. K. Zhou, X. Wang, X. Sun, Q. Peng, and Y. Li, J. Catal. 229, 206 (2005).

    Article  Google Scholar 

  7. K. Wu, L. Zhou, C.J. Jia, and C.H. Yan, Mater. Chem. Front. 1, 1754 (2017).

    Article  Google Scholar 

  8. P.D. Hu and M. Long, Appl. Catal. B Environ. 181, 103 (2016).

    Article  Google Scholar 

  9. R. Prasad and P. Singh, Catal. Rev. 54, 224 (2012).

    Article  Google Scholar 

  10. J. Zhao, X. Wang, Z.C. Xu, and J.S.C. Loo, J. Mater. Chem. A 2, 15228 (2014).

    Article  Google Scholar 

  11. T. Dutta, K.H. Kim, M. Uchimiya, E.E. Kwon, B.H. Jeon, A. Deep, and S.T. Yun, Environ. Res. 150, 182 (2016).

    Article  Google Scholar 

  12. Z.B. Huang, B.S. Liu, X.Y. Tang, X.H. Wang, and R. Amin, Fuel 177, 217 (2016).

    Article  Google Scholar 

  13. D.D. He, D.K. Chen, H.S. Hao, J. Yua, J. Liu, J. Lu, F. Liu, G. Wan, S. He, and Y. Luo, Appl. Surf. Sci. 390, 959 (2016).

    Article  Google Scholar 

  14. C. Qu and X.G. Qu, NPG Asia Mater. 6, e90 (2014).

    Article  Google Scholar 

  15. C.T. Campbell and C.H. Peden, Science 309, 713 (2005).

    Article  Google Scholar 

  16. M. Lykakia, E. Pachatouridou, S.A.C. Carabineiroc, E. Liopouloub, C. Andriopouloud, N. Kallithrakas-Kontose, S. Boghosian, and M. Konsolakis, Appl. Catal. B Environ. 230, 18 (2018).

    Article  Google Scholar 

  17. Y. Li, Y. Cai, X. Xing, N. Chen, D. Deng, and Y. Wang, Anal. Methods UK 7, 3238 (2015).

    Article  Google Scholar 

  18. Y. Xie, J.F. Wu, G.J. Jing, H. Zhang, S.H. Zeng, X.P. Tiana, X.Y. Zou, J. Wen, H. Su, C.J. Zhong, and P. Cui, Appl. Catal. B Environ. 239, 665 (2018).

    Article  Google Scholar 

  19. Y. Jiao, F. Wang, X. Ma, Q. Tang, K. Wang, Y. Guo, and L. Yang, Microporous Mesoporous Mater. 176, 1 (2013).

    Article  Google Scholar 

  20. Z. Wu, M. Li, and S.H. Overbury, J. Catal. 285, 61 (2012).

    Article  Google Scholar 

  21. Tana, M. Zhang, J. Li, H. Li, Y. Li, and W. Shen, Catal. Today 148, 179 (2009).

    Article  Google Scholar 

  22. C. Pan, D. Zhang, L. Shi, and J. Fang, Eur. J. Inorg. Chem. 2008, 2429 (2008).

    Article  Google Scholar 

  23. H.X. Mai, L.D. Sun, Y.W. Zhang, R. Si, W. Feng, H.P. Zhang, H.C. Liu, and C.H. Yan, J. Phys. Chem. B 109, 24380 (2005).

    Article  Google Scholar 

  24. F.X. Cao, S. Zhang, W. Gao, T. Cao, and Y.Q. Qu, Catal. Sci. Technol. 8, 3233 (2018).

    Article  Google Scholar 

  25. I. McCue, E. Benn, B. Gaskey, and J. Erlebacher, Annu. Rev. Mater. Res. 46, 263 (2016).

    Article  Google Scholar 

  26. T. Kou, C. Si, J. Pinto, C. Ma, and Z. Zhang, Nanoscale 9, 8007 (2017).

    Article  Google Scholar 

  27. N. Yu, T. Wang, C. Nie, L.J. Sun, J. Li, and H.R. Geng, JOM 68, 391 (2016).

    Article  Google Scholar 

  28. X.Y. Li, L.J. Niu, X.L. Zhang, D. Duan, K. Li, and Z.B. Sun, JOM 71, 522 (2018).

    Article  Google Scholar 

  29. X. Zhang, K. Li, W. Shi, C. Wei, X. Song, S. Yang, and Z. Sun, Nanotechnology 28, 045602 (2017).

    Article  Google Scholar 

  30. N. Yu, L. Jiang, H.Y. Hou, X.T. Chen, J. Li, H.R. Geng, and D.G. Zhao, JOM 69, 1027 (2017).

    Article  Google Scholar 

  31. P. Bera, A. Gayen, M.S. Hegde, N.P. Lalla, L. Spadaro, F. Frusteri, and F. Arena, J. Phys. Chem. B 2, 6122 (2003).

    Article  Google Scholar 

  32. B. de Rivas, C. Sampedro, E.V. Ramos-Fernández, R. López-Fonseca, J. Gascon, M. Makkee, and J.I. Gutiérrez-Ortiz, Appl. Catal. A Gen. 456, 96 (2013).

    Article  Google Scholar 

  33. Q. Wu, F. Zhang, P. Xiao, H.S. Tao, X.Z. Wang, and Z. Hu, J. Phys. Chem. C 112, 17076 (2008).

    Article  Google Scholar 

  34. C. Sangwichien, G.L. Aranovich, and M.D. Donohue, Colloid Surface A 206, 313 (2002).

    Article  Google Scholar 

  35. X. Ren, C. Guo, L. Xu, T. Li, L. Hou, and Y. Wei, ACS Appl. Mater. Interfaces 7, 19930 (2015).

    Article  Google Scholar 

  36. Y.S. Zhao, F. Dong, W.L. Han, H.J. Zhao, and Z.C. Tang, RSC Adv. 8, 1583 (2018).

    Article  Google Scholar 

  37. H.Q. Zhu, Z. Qin, W.J. Shan, W. Shen, and J. Wang, J. Catal. 225, 267 (2004).

    Article  Google Scholar 

  38. Q. Fu, A. Weber, and M. Flytzani-Stephanopoulos, Catal. Lett. 77, 1 (2001).

    Article  Google Scholar 

  39. M.F. Luo, Y.J. Zhong, X.X. Yuan, and X.M. Zheng, Appl. Catal. A Gen. 162, 121 (1997).

    Article  Google Scholar 

  40. H.C. Yao and Y.F. Yao, J. Catal. 86, 254 (1984).

    Article  Google Scholar 

  41. X. Zhang, D. Duan, G. Li, W. Feng, S. Yang, and Z. Sun, Nanotechnology 29, 095606 (2018).

    Article  Google Scholar 

  42. S. Watanabe, X. Ma, and C.S. Song, J. Phys. Chem. C 113, 14249 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51771141, 51371135 and 51671155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanbo Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, X., Duan, D. et al. Effects of Ce Content in Precursor Alloys on Catalytic Properties of CeO2 Nanorods. JOM 72, 706–710 (2020). https://doi.org/10.1007/s11837-019-03957-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03957-z

Navigation