Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Synthesis of Flower-Like ZnO Micro/Nano Structures by the Spray Pyrolysis Technique

  • 30 Accesses

Abstract

Flower-like zinc oxide (ZnO) micro-/nano-structures are synthesized as thin films on glass substrates by the spray pyrolysis technique at a substrate temperature of 350 ± 5°C. The films are characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM) and x-ray energy dispersion spectroscopy (EDS). Absorbance spectra (UV–Vis) and ImageJ software is used for size analysis. The XRD diffractogram revealed that the films have a hexagonal (wurtzite) phase with preferential orientation along the (002) line. SEM images showed that the films have a micro/nano flower-like structure. EDS spectra revealed that the films contain chlorine in addition to zinc and oxygen. Absorbance measurements were used to estimate the band gap energies, which were found to be larger than the bulk value. Such morphologies and band gap values are advantageous when using ZnO as fore contact and/or window material in thin-film solar cells and photoanodes in dye-sensitized solar cells, optoelectronic devices and gas sensors.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, and A. Schulte, Phys. B 403, 3713 (2008).

  2. 2.

    N. Ekthammathat, A. Phuruangrat, S. Thongtem, and T. Thongtem, Dig. J. Nanomater. Bios. 10, 149 (2015).

  3. 3.

    D.-S. Kang, S.K. Han, S.M. Yang, J.G. Kim, W.J. Hwang, and S.-K. Hong, J. Korean Phys. Soc. 53, 292 (2008).

  4. 4.

    S.G. Leonardi, Chemosensors 5, 17 (2017).

  5. 5.

    N.R. Shanmugam, S. Muthukumar, and S. Prasad, Future Sci. OA. 3(4), FSO196 (2017).

  6. 6.

    C. Huang, R. Shi, A. Amini, Z. Wu, S. Xu, L. Zhang, W. Cao, J. Feng, H. Song, Y. Shi, N. Wang, and C. Cheng, Sci. Rep. 5, 8226 (2015).

  7. 7.

    V. Coleman, C. Jagadish, in Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applicationsm, ed. by C. Jagadish, S. Pearton (Elsevier Science Ltd, Amsterdsm, 2006), p. 1

  8. 8.

    C.F. Klingshirn, A. Waag, A. Hoffmann, and J. Geurts, Zinc Oxide: From Fundamental Properties Towards Novel Applications (Berlin, Germany: Springer, 2010), p. 120.

  9. 9.

    A. Kamalianfar, S.A. Halim, M.G. Naseri, M. Navasery, F. UdDin, J.A.M. Zahedi, K.P. Lim, E.B. Saion, C.K. Chen, and A.L. Monfared, Int. J. Electrochem. Sci. 8, 7724 (2013).

  10. 10.

    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).

  11. 11.

    J.B. Baxter and E.S. Aydil, Sol. Energy Mater. Sol. Cells 90, 607 (2006).

  12. 12.

    T.-J. Hsueh, C.-L. Hsu, S.-J. Chang, and I.-C. Chen, Sens. Actuators B 126, 473 (2007).

  13. 13.

    Q.Y. Xu, S.Q. Zhou, and H. Schmidt, J. Alloys. Compd. 487, 665 (2009).

  14. 14.

    H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, Adv. Funct. Mater. 20, 561 (2010).

  15. 15.

    Y. Huang and G.L. Yuan, Mater. Lett. 82, 85 (2012).

  16. 16.

    L.D. Wang, S.G. Liu, X.L. Liu, Z.J. Liu, Z. Ma, and Z.Y. Huang, Chin. Sci. Bull. 58, 3380 (2013).

  17. 17.

    T. Han, X. Li, X. Zhang, J. Liu, and J. Li, Adv. Cond. Matter. Phys. 2017, 4859863 (2017).

  18. 18.

    L.F. Koao, F.B. Dejene, and H.C. Swart, Mater. Sci. Semicond. Process. 27, 33 (2014).

  19. 19.

    Y. Chen, H.-J. Ko, S.-K. Hong, Y. Segawa, and T. Yao, Appl. Phys. Lett. 80, 1358 (2002).

  20. 20.

    S. Nicolay, M. Benkhaira, L. Ding, J. Escarre, G. Bugnon, F. Meillaud, and C. Ballif, Sol. Energy Mater. Sol. Cells 105, 46 (2012).

  21. 21.

    S. Faÿ, J. Steinhauser, S. Nicolay, and C. Ballif, Thin Solid Films 518, 2961 (2009).

  22. 22.

    A. Hongsingthong, I.A. Yunaz, S. Miyajima, M. Konagai, Proceedings of the 35th IEEE Photovoltaic Specialists Conference (2010), p. 1508.

  23. 23.

    O. Kluth, G. Schöpe, J. Hüpkes, C. Agashe, J. Müller, and B. Rech, Thin Solid Films 442, 80 (2003).

  24. 24.

    M. Ohyama, H. Kozuka, and T. Yoko, J. Am. Ceram. Soc. 81, 1622 (1998).

  25. 25.

    S. Fairose, S. Ernest, International Journal of Advanced Scientific Research & Development (IJASRD), 03 (01/II), 109 (2016).

  26. 26.

    S.J. Ikhmayies, J. Electron. Mater. 45, 3964 (2016).

  27. 27.

    S.J. Ikhmayies, N.M. Abu El-Haija, and R.N. Ahmad-Bitar, Journal of Semiconductors 36, 033005-1-6 (2014).

  28. 28.

    S.J. Ikhmayies, N.M. AbuEl-Haija, and R.N. Ahmad-Bitar, Physica Scripta 81, 015703 (2010).

  29. 29.

    S.J. Ikhmayies, N.M. AbuEl-Haija, and R.N. Ahmad-Bitar, FDMP: Fluid Dynamics & Materials Processing 6, 165 (2010).

  30. 30.

    S.J. Ikhmayies, N.M. AbuEl-Haija, and R.N. Ahmad-Bitar, FDMP: Fluid Dynamics & Materials Processing 6, 219 (2010).

  31. 31.

    S.J. Ikhmayies and M.B. Zbib, J. Electron. Mater. 46, 3982 (2017).

  32. 32.

    S.J. Ikhmayies, Metall. Mater. Trans. A 48, 3625 (2017).

  33. 33.

    S.J. Ikhmayies and M.B. Zbib, J. Electron. Mater. 46, 5629 (2017).

  34. 34.

    H.K. Juwhari, S.J. Ikhmayies, and B. Lahlouh, Int. J. Hydrog. Energy 42, 17741 (2017).

  35. 35.

    S.J. Ikhmayies, Characterization of Minerals, Metals, and Materials, ed by S.J. Ikhmayies, B. Li, J.S. Carpenter, J. Li, J.-Y. Hwang, S.N. Monteiro, D. Firrao, M. Zhang, Z. Peng, J.P. Escobedo-Diaz, C. Bai, Y.E. Kalay, R. Goswami, J. Kim (TMS and Springer, Berlin 2017), p. 131.

  36. 36.

    L. Jiang, G. Li, Q. Ji, and H. Peng, Mater. Lett. 61, 1964 (2007).

  37. 37.

    J.J. Feng, Q.C. Liao, A.J. Wang, and J.R. Chen, Cryst. Eng. Commun. 13, 4202 (2011).

  38. 38.

    Y. Lu, L. Wang, D. Wang, T. Xie, L. Chen, and Y. Lin, Mater. Chem. Phys. 129, 281 (2011).

  39. 39.

    C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, Nat. Methods 9, 671 (2012).

  40. 40.

    J. Schindelin, C.T. Rueden, M.C. Hiner, and K.W. Eliceiri, Mol. Reprod. Dev. 82, 518 (2015).

  41. 41.

    Q. Li, H. Li, R. Wang, G. Li, H. Yang, and R. Chen, J. Alloys. Compd. 567, 1 (2013).

  42. 42.

    H. Li, Z. Lu, Q. Li, M.H. So, C.M. Che, and R. Chen, Chem. Chem. Asian J. 6, 2320 (2011).

  43. 43.

    Z.L. Wang, J. Phys. Chem. B 104, 1153 (2000).

  44. 44.

    M.F. Khan, M. Hameedullah, A.H. Ansari, E. Ahmad, M.B. Lohani, R.H. Khan, M.M. Alam, W. Khan, F.M. Husain, and I. Ahmad, Int. J. Nanomed. 9, 853 (2014).

  45. 45.

    S.S. Kanmani and K. Ramachandran, J. Mater. Sci. 48, 2076 (2013).

Download references

Author information

Correspondence to Shadia J. Ikhmayies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ikhmayies, S.J. Synthesis of Flower-Like ZnO Micro/Nano Structures by the Spray Pyrolysis Technique. JOM 72, 621–627 (2020). https://doi.org/10.1007/s11837-019-03952-4

Download citation