Skip to main content

Advertisement

Log in

Revealing the Strain Effect on Radiation Response of Amorphous–Crystalline Cu-Zr Laminate

  • Mechanical Properties of Metastable Materials Containing Strong Disorder
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nanocrystalline materials containing amorphous intergranular films (AIFs) exhibit excellent mechanical properties, radiation resistance, and thermal stability and may serve as promising candidate materials for use in advanced nuclear energy systems. The aim of this work is to reveal the effect of mechanical stress on the radiation damage behavior of AIF systems. Based on a bicrystal Cu system with Zr-doped AIFs, molecular dynamics is used to simulate the radiation process and examine the AIF sink efficiency, defect propensity, defect size distribution, and Zr mixing under uniaxial and hydrostatic strain conditions. The results show that the sink efficiency of the glue-like AIFs is not compromised under applied strains. The anisotropy resulting from the intrinsic microstructure and elastic deformation leads to a distinct radiation response, where extension (contraction) of the structure perpendicular to the AIFs increases (decreases) the vacancy density. The strain-dependent defect density, along with the cluster size distributions, can be interpreted based on the variations in the defect formation energy and anisotropic defect diffusion. Finally, the Zr mixing induced by collision cascades is found to be insensitive to the mechanical strains. These findings provide meaningful information towards understanding the stress effect on the radiation response of AIF systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin: Springer, 2016).

    Google Scholar 

  2. D. Kaoumi, A. Motta, and R. Birtcher, J. Appl. Phys. 104, 073525 (2008).

    Article  Google Scholar 

  3. M. Jin, P. Cao, and M.P. Short, Scr. Mater. 163, 66 (2019).

    Article  Google Scholar 

  4. A. Khalajhedayati, Z. Pan, and T.J. Rupert, Nat. Commun. 7, 10802 (2016).

    Article  Google Scholar 

  5. Y. Wang, J. Li, A.V. Hamza, and T.W. Barbee, Proc. Natl. Acad. Sci. 104, 11155 (2007).

    Article  Google Scholar 

  6. P. Dubuisson, A. Maillard, C. Delalande, D. Gilbon, and J.L. Seran, Effects of Radiation on Materials the 15th International Symposium, STP 1125 (Philadelphia, PA: American Society for Testing and Materials, 1992), pp. 995–1014.

  7. K. Kasama, F. Toyokawa, M. Tsukiji, M. Sakamoto, and K. Kobayashi, IEEE Trans. Nucl. Sci. 33, 1210 (1986).

    Article  Google Scholar 

  8. C. Xu and G.S. Was, J. Nucl. Mater. 454, 255 (2014).

    Article  Google Scholar 

  9. M. Cui, N. Gao, D. Wang, X. Gao, and Z. Wang, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 460, 60 (2019).

    Article  Google Scholar 

  10. A. Brailsford and R. Bullough, J. Nucl. Mater. 48, 87 (1973).

    Article  Google Scholar 

  11. B. Beeler, M. Asta, P. Hosemann, and N. Grønbech-Jensen, J. Nucl. Mater. 459, 159 (2015).

    Article  Google Scholar 

  12. S. Miyashiro, S. Fujita, and T. Okita, J. Nucl. Mater. 415, 1 (2011).

    Article  Google Scholar 

  13. F. Gao, D. Bacon, P. Flewitt, and T. Lewis, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 180, 187 (2001).

    Article  Google Scholar 

  14. S. Di, Z. Yao, M.R. Daymond, and F. Gao, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 303, 95 (2013).

    Article  Google Scholar 

  15. B. Beeler, M. Asta, P. Hosemann, and N. Grønbech-Jensen, J. Nucl. Mater. 474, 113 (2016).

    Article  Google Scholar 

  16. M.J. Banisalman and T. Oda, Comput. Mater. Sci. 158, 346 (2019).

    Article  Google Scholar 

  17. N. Gao, W. Setyawan, R.J. Kurtz, and Z. Wang, J. Nucl. Mater. 493, 62 (2017).

    Article  Google Scholar 

  18. C. Kang, Q. Wang, and L. Shao, J. Nucl. Mater. 485, 159 (2017).

    Article  Google Scholar 

  19. S. Plimpton, P. Crozier, and A. Thompson, LAMMPS-Large-Scale Atomic/Molecular Massively Parallel Simulator, Vol. 18 (Sandia National Laboratories, 2007), p. 43.

  20. V. Borovikov, M.I. Mendelev, and A.H. King, Model. Simul. Mater. Sci. Eng. 24, 085017 (2016).

    Article  Google Scholar 

  21. J.F. Ziegler, J.P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Oxford: Pergamon, 1985).

    Google Scholar 

  22. K. Nordlund, M. Ghaly, R. Averback, M. Caturla, T.D. de La Rubia, and J. Tarus, Phys. Rev. B 57, 7556 (1998).

    Article  Google Scholar 

  23. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).

    Article  Google Scholar 

  24. G. Henkelman, B.P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).

    Article  Google Scholar 

  25. S.J. Dillon, M. Tang, W.C. Carter, and M.P. Harmer, Acta Mater. 55, 6208 (2007).

    Article  Google Scholar 

  26. R. Averback, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 15, 675 (1986).

    Article  Google Scholar 

  27. H.A. Atwater, C.V. Thompson, and H.I. Smith, J. Appl. Phys. 64, 2337 (1988).

    Article  Google Scholar 

  28. P. Shewmon, Diffusion in Solids (Berlin: Springer, 2016).

    Book  Google Scholar 

  29. D. Wang, N. Gao, Z. Wang, X. Gao, W. He, M. Cui, L. Pang, and Y. Zhu, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 384, 68 (2016).

    Article  Google Scholar 

  30. W. Johnson, Y. Cheng, M. Van Rossum, and M. Nicolet, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 7, 657 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaomiao Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, M., Cao, P. Revealing the Strain Effect on Radiation Response of Amorphous–Crystalline Cu-Zr Laminate. JOM 72, 868–876 (2020). https://doi.org/10.1007/s11837-019-03932-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03932-8

Navigation