Machine Learning-Enabled Competitive Grain Growth Behavior Study in Directed Energy Deposition Fabricated Ti6Al4V

Abstract

Directed energy deposition (DED) of titanium alloys is a rapidly developing technology because of its flexibility in freeform fabrication and remanufacturing. However, the uncertainties of a solidification microstructure during the deposition process are limiting its development. This article presents an artificial neural network (ANN) to investigate the relation between the grain boundary tilt angle and three causative factors, namely the thermal gradient, crystal orientation and Marangoni effect. A series of wire feedstock DED, optical microscope and electron backscatter diffraction experiments was carried out under the Taguchi experimental design to gather the training and testing data for the ANN. Compared with conventional microstructure simulation methods, the strategy and ANN model developed in this work were demonstrated to be a valid way to describe the competitive grain growth behavior in DED fabricated Ti6Al4V. They can be deployed to achieve a quantitative microstructure simulation and extended to other polycrystal material solidification processes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    G. Lütjering and J.C. Williams, Titanium, 2nd ed. (New York: Springer, 2007), pp. 1–12.

    Google Scholar 

  2. 2.

    D. Greitemeier, C. Dalle Donne, A. Schoberth, M. Jürgens, J. Eufinger, and T. Melz, Appl. Mech. Mater. 807, 169 (2015).

    Article  Google Scholar 

  3. 3.

    P. Kobryn and S. Semiatin, JOM 53, 40 (2001).

    Article  Google Scholar 

  4. 4.

    L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J.P. Kruth, Acta Mater. 58, 3303 (2010).

    Article  Google Scholar 

  5. 5.

    F. Wang, S. Williams, and M. Rush, Int. J. Adv. Manuf. Technol. 57, 597 (2011).

    Article  Google Scholar 

  6. 6.

    F. Wang, S. Williams, P. Colegrove, and A.A. Antonysamy, MMTA 44, 968 (2012).

    Article  Google Scholar 

  7. 7.

    W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014).

    Article  Google Scholar 

  8. 8.

    D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, Acta Mater. 117, 371 (2016).

    Article  Google Scholar 

  9. 9.

    J.J. Lin, Y.H. Lv, Y.X. Liu, B.S. Xu, Z. Sun, Z.G. Li, and Y.X. Wu, Mater. Des. 102, 30 (2016).

    Article  Google Scholar 

  10. 10.

    N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, N. Carlson, and S.S. Babu, Acta Mater. 112, 303 (2016).

    Article  Google Scholar 

  11. 11.

    W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, Int. Mater. Rev. 61, 315 (2016).

    Article  Google Scholar 

  12. 12.

    A. Basak and S. Das, Annu. Rev. Mater. Res. 46, 125 (2016).

    Article  Google Scholar 

  13. 13.

    S.S. Al-Bermani, M.L. Blackmore, W. Zhang, and I. Todd, MMTA 41, 3422 (2010).

    Article  Google Scholar 

  14. 14.

    G.C. Obasi, S. Birosca, J. Quinta Da Fonseca, and M. Preuss, Acta Mater. 60, 1048 (2012).

    Article  Google Scholar 

  15. 15.

    Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, and S.B. Tor, Mater. Des. 139, 565 (2018).

    Article  Google Scholar 

  16. 16.

    M. Umehara, H.S. Stein, D. Guevarra, P.F. Newhouse, D.A. Boyd, and J.M. Gregoire, NPJ Comput. Mater. 5, 34 (2019).

    Article  Google Scholar 

  17. 17.

    W. Liu and J. Dupont, Acta Mater. 52, 4833 (2004).

    Google Scholar 

  18. 18.

    H. Wei, G. Knapp, T. Mukherjee and T. Debroy, Addit. Manuf. 25, 448 (2019).

    Article  Google Scholar 

  19. 19.

    A. Pineau, G. Guillemot, D. Tourret, A. Karma, and C.-A. Gandin, Acta Mater. 155, 286 (2018).

    Article  Google Scholar 

  20. 20.

    Y. Lee, M. Nordin, S.S. Babu, and D.F. Farson, Metall. Mater. Trans. B 45, 1520 (2014).

    Article  Google Scholar 

  21. 21.

    M.F. Zhu, S.Y. Lee, and C.P. Hong, Phys. Rev. E: Stat., NonlinearSoft Matter Phys. 69, 061610 (2004).

    Article  Google Scholar 

  22. 22.

    C. Cayron, J. Appl. Crystallogr. 40, 1183 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Collaborative Research and Development Grant CRDPJ 479630-15. The lead author also received partial funding from the NSERC Collaborative Research and Training Experience (CREATE) Program Grant 449343. The author also appreciates the McGill Engineering Doctoral Award (MEDA) grant and China Scholarship Council (201706460027).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yaoyao Fiona Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Sage, M., Guan, X. et al. Machine Learning-Enabled Competitive Grain Growth Behavior Study in Directed Energy Deposition Fabricated Ti6Al4V. JOM 72, 458–464 (2020). https://doi.org/10.1007/s11837-019-03917-7

Download citation