Towards Bridging the Experimental Length-Scale Gap for Tensile Tests on Structural Materials: Lessons Learned from an Initial Assessment of Microtensile Tests and the Path Forward

Abstract

Microtensile testing of structural materials offers several advantages over conventional mesoscale tests, including the ability to target specific areas of interest and directly correlate the mechanical response to the microstructure of the material. As this technique becomes more widely adopted, it has the potential to have a tremendous impact in the nuclear materials field. However, further work on establishing appropriate testing parameters, unifying testing procedures, and demonstrating the effectiveness of the methodology is required before microtensile tests can be used to replace mesotensile tests for the qualification of materials for use in reactor environments. As a first step towards bridging the experimental length-scale gap for tensile tests, we conducted micro- and mesotensile tests on polycrystalline 304 stainless steel and directly compared the test data to identify the size scaling behavior in such material. Comparison of the results obtained on these two length scales clearly illustrates the specimen size effect, with smaller being stronger. The paper discusses the limitations of microtensile testing, outlines the challenges involved in interpretation of its results, and lists the lessons learned through the process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    G.E. Lucas, G.R. Odette, M. Sokolov, P. Spätig, T. Yamamoto, and P. Jung, J. Nucl. Mater. 307–311, 1600–1608 (2002). https://doi.org/10.1016/S0022-3115(02)01171-6.

    Article  Google Scholar 

  2. 2.

    M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix, Science 305, 986–990 (2004).

    Article  Google Scholar 

  3. 3.

    M. Legros, D.S. Gianola, and C. Motz, MRS Bull. 35, 354–360 (2010).

    Article  Google Scholar 

  4. 4.

    G. Lucas, J. Nucl. Mater. 117, 327–339 (1983).

    Article  Google Scholar 

  5. 5.

    G.E. Lucas, Metall. Trans. A 21, 1105–1119 (1990). https://doi.org/10.1007/BF02698242.

    Article  Google Scholar 

  6. 6.

    R.L. Klueh, Nucl. Eng. Des. 2, 407–416 (1985).

    Google Scholar 

  7. 7.

    X. Mao, H. Takahashi, and T. Kodaira, Scr. Metall. Mater. 25, 2487–2490 (1991).

    Article  Google Scholar 

  8. 8.

    A. Okada, G.E. Lucas, and M. Kiritani, Trans. Jpn. Inst. Met. 29, 99–108 (1988).

    Article  Google Scholar 

  9. 9.

    P. Hosemann, Scr. Mater. 143, 161–168 (2018). https://doi.org/10.1016/j.scriptamat.2017.04.026.

    Article  Google Scholar 

  10. 10.

    D.E.J. Armstrong, C.D. Hardie, J.S.K.L. Gibson, A.J. Bushby, P.D. Edmondson, and S.G. Roberts, J. Nucl. Mater. 462, 374–381 (2015). https://doi.org/10.1016/j.jnucmat.2015.01.053.

    Article  Google Scholar 

  11. 11.

    J.M. Wheeler, D.E.J. Armstrong, W. Heinz, and R. Schwaiger, Curr. Opin. Solid State Mater. Sci. 19, 354–366 (2015). https://doi.org/10.1016/j.cossms.2015.02.002.

    Article  Google Scholar 

  12. 12.

    D. Kiener, P. Hosemann, S.A. Maloy, and A.M. Minor, Nat. Mater. 10, 608–613 (2011). https://doi.org/10.1038/nmat3055.

    Article  Google Scholar 

  13. 13.

    D. Kiener, W. Grosinger, and G. Dehm, Scr. Mater. 60, 148–151 (2009). https://doi.org/10.1016/j.scriptamat.2008.09.024.

    Article  Google Scholar 

  14. 14.

    D. Kiener, A.M. Minor, O. Anderoglu, Y. Wang, S.A. Maloy, and P. Hosemann, J. Mater. Res. 27, 2724–2736 (2012). https://doi.org/10.1557/jmr.2012.303.

    Article  Google Scholar 

  15. 15.

    D. Kiener, C. Motz, and G. Dehm, Mater. Sci. Eng., A 505, 79–87 (2009). https://doi.org/10.1016/j.msea.2009.01.005.

    Article  Google Scholar 

  16. 16.

    P. Hosemann, J.G. Swadener, D. Kiener, G.S. Was, S.A. Maloy, and N. Li, J. Nucl. Mater. 375, 135–143 (2008). https://doi.org/10.1016/j.jnucmat.2007.11.004.

    Article  Google Scholar 

  17. 17.

    P. Hosemann, Development of ultra small scale mechanical testing and localized he implantation for nuclear applications, in: Transactions of the American Nuclear Society, New Orleans, Louisiana (2016).

  18. 18.

    D. Frazer, B. Shaffer, K. Roney, H. Lim, B. Gong, P. Peralta, and P. Hosemann, Nucl. Fuels 116, 2–5 (2017).

    Google Scholar 

  19. 19.

    P. Hosemann, C. Shin, and D. Kiener, J. Mater. Res. 30, 1231–1245 (2015). https://doi.org/10.1557/jmr.2015.26.

    Article  Google Scholar 

  20. 20.

    D. Kiener, W. Grosinger, G. Dehm, and R. Pippan, Acta Mater. 56, 580–592 (2008). https://doi.org/10.1016/j.actamat.2007.10.015.

    Article  Google Scholar 

  21. 21.

    McMaster-Carr (n.d.). https://www.mcmaster.com/.

  22. 22.

    ASTM Committee on Mechanical Testing, Standard Test Methods for Tension Testing of Metallic Materials, ASTM Int. ASTM Stds. (2013) 1–28. https://doi.org/10.1520/e0008.

  23. 23.

    ASTM International, ASTM A370-18, Standard Test Methods and Definitions for Mechanical Testing of Steel Products (2018).

  24. 24.

    J.R. Greer, J.Y. Kim, and M.J. Burek, J. Mater. 61, 19–25 (2009).

    Google Scholar 

  25. 25.

    H.T. Vo, A. Reichardt, D. Frazer, N. Bailey, P. Chou, and P. Hosemann, J. Nucl. Mater. 493, 336–342 (2017). https://doi.org/10.1016/j.jnucmat.2017.06.026.

    Article  Google Scholar 

  26. 26.

    A.T. Jennings and J.R. Greer, Philos. Mag. 91, 1108–1120 (2011). https://doi.org/10.1080/14786435.2010.505180.

    Article  Google Scholar 

  27. 27.

    J.Y. Kim and J.R. Greer, Acta Mater. 57, 5245–5253 (2009). https://doi.org/10.1016/j.actamat.2009.07.027.

    Article  Google Scholar 

  28. 28.

    S.A. Maloy, M.R. James, G. Willcutt, W.F. Sommer, M. Sokolov, L.L. Snead, M.L. Hamilton, and F. Garner, J. Nucl. Mater. 296, 119–128 (2001). https://doi.org/10.1016/S0022-3115(01)00514-1.

    Article  Google Scholar 

  29. 29.

    D. Kaoumi and J. Liu, Mater. Sci. Eng., A 715, 73–82 (2018). https://doi.org/10.1016/j.msea.2017.12.036.

    Article  Google Scholar 

  30. 30.

    R.P. Babu, S. Irukuvarghula, A. Harte, and M. Preuss, Acta Mater. 120, 391–402 (2016). https://doi.org/10.1016/j.actamat.2016.08.008.

    Article  Google Scholar 

  31. 31.

    C.J. Szczepanski, S.K. Jha, P.A. Shade, R. Wheeler, and J.M. Larsen, Int. J. Fatigue 57, 131–139 (2013). https://doi.org/10.1016/j.ijfatigue.2012.08.008.

    Article  Google Scholar 

  32. 32.

    B.P. Kashyap and K. Tangri, Acta Metall. Mater. 43, 3971–3981 (1995). https://doi.org/10.1016/0956-7151(95)00110-H.

    Article  Google Scholar 

  33. 33.

    P. Hosemann, Y. Dai, E. Stergar, A.T. Nelson, and S.A. Maloy, J. Nucl. Sci. Technol. 48, 575–579 (2011). https://doi.org/10.1080/18811248.2011.9711735.

    Article  Google Scholar 

  34. 34.

    D. Kiener, C. Motz, T. Schöberl, M. Jenko, and G. Dehm, Adv. Eng. Mater. 8, 1119–1125 (2006). https://doi.org/10.1002/adem.200600129.

    Article  Google Scholar 

  35. 35.

    S. Brenner, Science 128, 569–575 (1958).

    Article  Google Scholar 

  36. 36.

    W.D. Nix, Scr. Mater. 39, 545–554 (1998).

    Article  Google Scholar 

  37. 37.

    A.T. Jennings and J.R. Greer, Philos. Mag. 91, 1108–1120 (2011). https://doi.org/10.1080/14786435.2010.505180.

    Article  Google Scholar 

  38. 38.

    D.M. Dimiduk, C. Woodward, R. LeSar, and M.D. Uchic, Science 312, 1188–1191 (2006). https://doi.org/10.1126/science.1123889.

    Article  Google Scholar 

  39. 39.

    J.R. Greer, W.C. Oliver, and W.D. Nix, Acta Mater. 53, 1821–1830 (2005). https://doi.org/10.1016/j.actamat.2004.12.031.

    Article  Google Scholar 

  40. 40.

    C.A. Volkert and E.T. Lilleodden, Philos. Mag. 86, 5567–5579 (2006). https://doi.org/10.1080/14786430600567739.

    Article  Google Scholar 

  41. 41.

    C.P. Frick, B.G. Clark, S. Orso, A.S. Schneider, and E. Arzt, Mater. Sci. Eng., A 489, 319–329 (2008). https://doi.org/10.1016/j.msea.2007.12.038.

    Article  Google Scholar 

  42. 42.

    D.S. Gianola and C. Eberl, JOM 61, 24–35 (2009). https://doi.org/10.1007/s11837-009-0037-3.

    Article  Google Scholar 

  43. 43.

    D. Jang and J.R. Greer, Nat. Mater. 9, 215–219 (2010). https://doi.org/10.1038/nmat2622.

    Article  Google Scholar 

  44. 44.

    X.W. Gu, C.N. Loynachan, Z. Wu, Y.-W. Zhang, D.J. Srolovitz, and J.R. Greer, Nano Lett. 12, 6385–6392 (2012).

    Article  Google Scholar 

  45. 45.

    C. Shin, S. Lim, H.H. Jin, P. Hosemann, and J. Kwon, Mater. Sci. Eng., A 622, 67–75 (2015). https://doi.org/10.1016/j.msea.2014.11.004.

    Article  Google Scholar 

  46. 46.

    J. Chen, Y. Dai, F. Carsughi, W.F. Sommer, G.S. Bauer, and H. Ullmaier, J. Nucl. Mater. 275, 115–118 (1999). https://doi.org/10.1016/S0022-3115(99)00147-6.

    Article  Google Scholar 

  47. 47.

    J.G. Gigax, H. Vo, Q. McCulloch, M. Chancey, Y. Wang, S.A. Maloy, N. Li, and P. Hosemann, Scr. Mater. 170, 145–149 (2019). https://doi.org/10.1016/j.scriptamat.2019.05.004.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported through the Nuclear Energy University Program (NEUP), under project number 18-14912 “Bridging length scales on mechanical property evaluation.” The authors acknowledge David Christianson, Dr. Riley Parrish, and Charlyne Smith for their support during various stages of the project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Assel Aitkaliyeva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ajantiwalay, T., Vo, H., Finkelstein, R. et al. Towards Bridging the Experimental Length-Scale Gap for Tensile Tests on Structural Materials: Lessons Learned from an Initial Assessment of Microtensile Tests and the Path Forward. JOM 72, 113–122 (2020). https://doi.org/10.1007/s11837-019-03897-8

Download citation