Skip to main content
Log in

Elasto-Plastic Finite Element Modeling of Short Carbon Fiber Reinforced 3D Printed Acrylonitrile Butadiene Styrene Composites

  • ICME-Based Design and Optimization for Additive Manufacturing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This research extends the existing classical lamination theory based finite element (FE) models to predict elasto-plastic and bimodular behavior of 3D printed composites with orthotropic material properties. Short carbon fiber reinforced acrylonitrile butadiene styrene was selected as the 3D printing material. Material characterization of a 3D printed unidirectional laminate was carried out using mechanical tests. A bimodular material model was implemented using explicit FE analysis to predict the tension and bending behavior of a 3D printed laminate. The results of the FE model predictions were experimentally validated. Hill’s yield function was effective at predicting the elasto-plastic stress–strain behavior of the laminate in tension. In bending, bimodular material behavior along with Hill’s yield function worked reasonably well in predicting the elasto-plastic bending of the laminate. The material model proposed can be used to predict the mechanical behavior of 3D printed parts with complex geometry under complex loading and boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Wang, M. Jiang, Z. Zhou, J. Gou, and D. Hui, Compos. B 110, 442 (2017).

    Article  Google Scholar 

  2. ISO/ASTM52900-15, https://doi.org/10.1520/isoastm52900-15.

  3. P. Kulkarni and D. Dutta, J. Eng. Ind. 121, 93 (1999). https://doi.org/10.1115/1.2830582.

    Article  Google Scholar 

  4. J.F. Rodríguez, J.P. Thomas, and J.E. Renaud, J. Mech. Des 125, 546 (2003).

    Article  Google Scholar 

  5. F. Yang and R. Pitchumani, Macromolecules 35, 3213 (2002).

    Article  Google Scholar 

  6. G. Alaimo, S. Marconi, L. Costato, and F. Auricchio, Compos. B 113, 371 (2017).

    Article  Google Scholar 

  7. S. Timoshenko, Strength of Materials, Part II: Advanced theory and problems, (Van Nostrand Reinhold, 1958), pp 1-510.

  8. C.W. Bert and C.J. Rebello, Eng. Str. 5, 227 (1983).

    Article  Google Scholar 

  9. R.M. Jones, AIAA J. 15, 16 (1977).

    Article  Google Scholar 

  10. N. Phan-Thien, Fibre Sci. Technol. 14, 191 (1981). https://doi.org/10.1016/0015-0568(81)90011-7.

    Article  Google Scholar 

  11. C. Ziemian, M. Sharma and S. Ziemian, in Mechanical Engineering, InTechOpen, (2012) https://doi.org/10.5772/34233.

    Google Scholar 

  12. Y. Song, Y. Li, W. Song, K. Yee, K.Y. Lee, and V.L. Tagarielli, Mater. Des. 123, 154 (2017).

    Article  Google Scholar 

  13. J.-Y. Sun, H.-Q. Zhu, S.-H. Qin, D.-L. Yang, and X.-T. He, J. Mat. Sci. Technol. 24, 1845 (2010). https://doi.org/10.1007/s12206-010-0601-3.

    Article  Google Scholar 

  14. C. Bert, J. Eng. Mater. Technol. 99, 344 (1977).

    Article  Google Scholar 

  15. S. Ambartsumyan and A.A. Khachatryan, Mekhanika Tverdogo Tela 2, 44 (1986).

    Google Scholar 

  16. M.E. Babeshko and Y.N. Shevchenko, Intl. Appl. Mech. 43, 1208 (2007).

    Article  Google Scholar 

  17. M. Shi, Y. Zhang, L. Cheng, Z. Jiao, W. Yang, J. Tan, and Y. Ding, J. Phys. Chem. B. 120, 10018–10029 (2016).

    Article  Google Scholar 

  18. W. Zhang, C. Cotton, J. Sun, D. Heider, B. Gu, B. Sun, and T.-W. Chou, Compos. B 137, 51 (2018).

    Article  Google Scholar 

  19. M. Somireddy, C.V. Singh, and A. Czekanski, Exp. Mech. 59, 871 (2019).

    Article  Google Scholar 

  20. M. Destrade, M.D. Gilchrist, J.A. Motherway, and J.G. Murphy, Mech. Mater. 42, 469 (2010).

    Article  Google Scholar 

  21. S. Bhandari and R. Lopez-Anido, Prog. Addit. Manuf. 4, 143 (2018). https://doi.org/10.1007/s40964-018-0070-2.

    Article  Google Scholar 

  22. S. Bhandari and R. Lopez-Anido, Addit. Manuf. 22, 187 (2018).

    Article  Google Scholar 

  23. S. Guessasma, S. Belhabib, H. Nouri, and O. Ben Hassana, Eur. Polym. J. 85, 324 (2016).

    Article  Google Scholar 

  24. H. Nouri, S. Guessasma, and S. Belhabib, J. Mater. Process. Technol. 234, 113 (2016).

    Article  Google Scholar 

  25. S. Guessasma, S. Belhabib, and H. Nouri, Polymers 11, 125 (2019).

    Article  Google Scholar 

  26. N. van de Werken, J. Hurley, P. Khanbolouki, A.N. Sarvestani, A.Y. Tamijani, and M. Tehrani, Compos. B 160, 684 (2019).

    Article  Google Scholar 

  27. Y. Xu, H. Zhang, B. Šavija, S. Chaves Figueiredo, and E. Schlangen, Mater. Des. 162, 143 (2019).

    Article  Google Scholar 

  28. M.C. Somireddy Aleksander, J. Manuf. Mater. Process. 1, 18 (2017). https://doi.org/10.3390/jmmp1020018.

    Article  Google Scholar 

  29. M. Somireddy, A. Czekanski, and C.V. Singh, Mater. Today Commun. 15, 143 (2018).

    Article  Google Scholar 

  30. K.-S. Liu and S.W. Tsai, Compos. Sci. Technol. 58, 1023 (1998).

    Article  Google Scholar 

  31. D. Notta-Cuvier, F. Lauro, and B. Bennani, Int. J. Solids Struct. 66, 140 (2015).

    Article  Google Scholar 

  32. P. Gotsis, C.C. Chamis, and L. Minnetyan, Compos. Sci. Technol. 58, 1137 (1998).

    Article  Google Scholar 

  33. W.W. El-Tahan, G.H. Staab, S.H. Advani, and J.K. Lee, J. Eng. Mech. 115, 963 (1989).

    Article  Google Scholar 

  34. L. Chen, W. Wen, and H. Cui, Sci. China: Technol. Sci. 56, 89 (2012).

    Article  Google Scholar 

  35. L. Zhang, Q. Gao, and H.W. Zhang, Int. J. Mech. Sci. 70, 57 (2013).

    Article  Google Scholar 

  36. L. Zhang, H.W. Zhang, J. Wu, and B. Yan, Acta Mech. Sin. 32, 481 (2015). https://doi.org/10.1007/s10409-015-0517-3.

    Article  Google Scholar 

  37. Z. Du, Y. Zhang, W. Zhang, and X. Guo, Int. J. Solids Struct. 100, 54 (2016).

    Article  Google Scholar 

  38. F. Mollica, M. Ventre, F. Sarracino, L. Ambrosio, and L. Nicolais, Comput. Math. Appl. 53, 209 (2007).

    Article  Google Scholar 

  39. H. Mehdipour, P.P. Camanho, and G. Belingardi, Compos. B 165, 199 (2019).

    Article  Google Scholar 

  40. A. Nanda and T. Kuppusamy, Compos. Struct. 17, 213 (1991).

    Article  Google Scholar 

  41. F. Dunne and N. Petrinic, Introduction to Computational Plasticity, (OUP Oxford illustrated, reprint edn., 2005), pp 143-180.

  42. F. Hild and S. Roux, Strain 42, 69 (2006).

    Article  Google Scholar 

  43. C. Niezrecki, P. Avitabile, C. Warren, P. Pingle, M. Helfrick, and E.P. Tomasini, AIP Conf. Proc. 1253, 219 (2010). https://doi.org/10.1063/1.3455461.

    Article  Google Scholar 

  44. A. Młyniec and T. Uhl, Proc. Inst. Mech. Eng. Part C 226, 16 (2011). https://doi.org/10.1177/0954406211411552.

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by the Transportation Infrastructure Durability Center at the University of Maine under grant 69A3551847101 from the U.S. Department of Transportation’s University Transportation Centers Program, the Harold W. Alfond Graduate Research Assistantship and the Malcolm G. Long ‘32 Professorship in Civil Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Bhandari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, S., Lopez-Anido, R.A., Wang, L. et al. Elasto-Plastic Finite Element Modeling of Short Carbon Fiber Reinforced 3D Printed Acrylonitrile Butadiene Styrene Composites. JOM 72, 475–484 (2020). https://doi.org/10.1007/s11837-019-03895-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03895-w

Navigation