Skip to main content
Log in

Strong Correlation Between Atomic-Level Pressures and Viscous Shear Relaxations in Liquids

  • Mechanical Properties of Metastable Materials Containing Strong Disorder
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Liquids are ubiquitous, but the atomic origin of viscosity remains unknown because of structural disorder and dynamic complexities. By using molecular dynamics simulation for liquid iron, we find a strong local correlation between the atomic-level pressure and the relaxation of atomic-level shear stress that is directly connected to viscosity. The results show that atomic sites under compression are more unstable against shear than those under tension, which causes fast relaxation in atomic-level shear stress. This result indicates spatial heterogeneities in the local viscosity in a liquid. We also find a temperature-independent relation between the local shear relaxation time and atomic-level volume strain, which suggests a universal structure-dynamics relationship in liquids. To explain our new findings, we discuss the relationships between the atomic-level pressure and various other parameters, such as the atomic-level shear stress, von Mises stress, local coordination number, and mean-squared displacements of atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.-P. Hansen and I.R. McDonald, Theory of simple liquids (New York: Academic Press, 2006).

    MATH  Google Scholar 

  2. P.A. Egelstaff, An introduction to the liquid state (London and New York: Academic Press, 1967).

    Google Scholar 

  3. D.J. Evans and G. Morriss, Statistical mechanics of nonequilibrium liquids (New York: Cambridge University Press, 2008).

    Book  Google Scholar 

  4. P. Debenedetti and F.H. Stillinger, Nature (London) 410, 259 (2001).

    Article  Google Scholar 

  5. C.A. Angell, Science 267, 1924 (1995).

    Article  Google Scholar 

  6. T. Iwashita, D.M. Nicholson, and T. Egami, Phys. Rev. Lett. 110, 205504 (2013).

    Article  Google Scholar 

  7. T. Iwashita and T. Egami, Phys. Rev. E 90, 052307 (2014).

    Article  Google Scholar 

  8. J. Ashwin and A. Sen, Phys. Rev. Lett. 114, 055002 (2015).

    Article  Google Scholar 

  9. R. Soklaski, V. Tran, Z. Nussinov, K.F. Kelton, and L. Yang, Philos. Mag. 96, 1212 (2016).

    Article  Google Scholar 

  10. M.H. Cohen and D. Turnbull, J. Chem. Phys. 31, 1164 (1959).

    Article  Google Scholar 

  11. J.L. Finney, Proc. R. Soc. A 319, 479 (1970).

    Article  Google Scholar 

  12. D. Srolovitz, K. Maeda, S. Takeuchi, T. Egami, and V. Vitek, J. Phys. F Metal. Phys. 11, 2209 (1981).

    Article  Google Scholar 

  13. F.C. Frank, Proc. R. Soc. A 215, 43 (1952).

    Article  Google Scholar 

  14. G. Tarjus, S.A. Kivelson, Z. Nussinov, and P. Viot, J. Phys. Condens. Matter 17, 1143 (2005).

    Article  Google Scholar 

  15. T. Egami and D. Srolovitz, J. Phys. F Metal. Phys. 12, 2141 (1982).

    Article  Google Scholar 

  16. T. Egami, K. Maeda, and V. Vitek, Philos. Mag. A 41, 883 (1980).

    Article  Google Scholar 

  17. R. Egami, Prog. Mater Sci. 56, 637 (2011).

    Article  Google Scholar 

  18. V.A. Levashov, J.R. Morris, and T. Egami, Phys. Lev. Lett. 106, 115703 (2011).

    Article  Google Scholar 

  19. K.-M. Tu, K. Kim, and N. Matsubayasi, J. Chem. Phys. 148, 094501 (2018).

    Article  Google Scholar 

  20. M.S. Green, J. Chem. Phys. 22, 398 (1954).

    Article  MathSciNet  Google Scholar 

  21. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

    Article  Google Scholar 

  22. V. Vitek and T. Egami, Phys. Stat. Sol. 144, 145 (1987).

    Article  Google Scholar 

  23. T. Egami, M. Ojha, D.M. Nicholson, D.V. Louzguine-Luzgin, N. Chen, and A. Inoue, Philos. Mag. 92, 655 (2012).

    Article  Google Scholar 

  24. Y. Shiihara, M. Kohyama, and S. Ishibashi, Phys. Rev. B 81, 075441 (2010).

    Article  Google Scholar 

  25. V.A. Levashov, J.R. Morris, and T. Egami, J. Chem. Phys. 138, 044507 (2013).

    Article  Google Scholar 

  26. Y.Q. Chen and E. Ma, Prog. Mater Sci. 56, 379 (2011).

    Article  Google Scholar 

  27. C. Barus, Am. J. Sci. 45, 87 (1893).

    Article  Google Scholar 

  28. T. Egami, K. Maeda, D. Srolovitz, and V. Vitek, J. Physique Coll. 41, 276 (1980).

    Google Scholar 

  29. D. Srolovits, V. Vitek, and T. Egami, Acta Metall. 31, 335 (1983).

    Article  Google Scholar 

Download references

Acknowledgements

TI acknowledges Takeshi Egami for the useful discussion and suggestions. This work was supported by JPSJ KAKENHI Grant Nos. JP17K14371 and JP19K03771. The computations were performed using Research Center for Computational Science, Okazaki, Japan. This work was partly achieved through the use of PC cluster for large-scale visualization (VCC) at the Cybermedia Center, Osaka University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Iwashita.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwashita, T., Koga, H. & Yamada, S. Strong Correlation Between Atomic-Level Pressures and Viscous Shear Relaxations in Liquids. JOM 72, 854–859 (2020). https://doi.org/10.1007/s11837-019-03889-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03889-8

Navigation