Skip to main content
Log in

Parametric Shape Optimization for Combined Additive–Subtractive Manufacturing

  • ICME-Based Design and Optimization of Materials for Additive Manufacturing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In industrial practice, additive manufacturing (AM) processes are often followed by post-processing operations such as heat treatment, subtractive machining, milling, etc., to achieve the desired surface quality and dimensional accuracy. Hence, a given part must be 3D-printed with extra material to enable this finishing phase. This combined additive/subtractive technique can be optimized to reduce manufacturing costs by saving printing time and reducing material and energy usage. In this work, a numerical methodology based on parametric shape optimization is proposed for optimizing the thickness of the extra material, allowing for minimal machining operations while ensuring the finishing requirements. Moreover, the proposed approach is complemented by a novel algorithm for generating inner structures to reduce the part distortion and its weight. The computational effort induced by classical constrained optimization methods is alleviated by replacing both the objective and constraint functions by their sparse grid surrogates. Numerical results showcase the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Nocedal and S. Wright, Numerical Optimization, 1st ed. (New York: Springer, 1999).

    Book  Google Scholar 

  2. G. Allaire, F. Jouve, and A. Toader, J. Comput. Phys. 194, 363 (2004).

    Article  MathSciNet  Google Scholar 

  3. E. Picelli, S. Townsend, C. Brampton, J. Norato, and A. Kim, Comput. Methods Appl Mech. Eng. 329, 1 (2018).

    Article  Google Scholar 

  4. Y. Wang and Z. Kang, Comput. Methods Appl Mech. Eng. 329, 553 (2018).

    Article  Google Scholar 

  5. C. Dapogny, R. Estevez, A. Faure, and G. Michailidis, Comput. Methods Appl Mech. Eng. 344, 626 (2019).

    Article  Google Scholar 

  6. F. Zwicke, M. Behr, and S. Elgeti, AIP Conf. Proc. 1896, 100001 (2017).

    Article  Google Scholar 

  7. G. Allaire, C. Dapogny, R. Estevez, A. Faure, and G. Michailidis, J. Comput. Phys. 351, 295 (2017).

    Article  MathSciNet  Google Scholar 

  8. S. Cacace, E. Cristiani, and L. Rocchi, Appl. Math. Model. 44, 446 (2017).

    Article  MathSciNet  Google Scholar 

  9. M. Chiumenti, E. Neiva, E. Salsi, M. Cervera, S. Baida, J. Moya, Z. Chen, C. Lee, and C. Davies, Addit. Manuf. 18, 171 (2017).

    Article  Google Scholar 

  10. E. Neiva, S. Badia, A.F. Martin, and M. Chiumenti, Int. J. Numer. Methods Eng. 119, 1098 (2019).

    Article  Google Scholar 

  11. H.-J. Bungartz and M. Griebel, Acta Numer. 13, 147 (2004).

    Article  MathSciNet  Google Scholar 

  12. F. Nobile, L. Tamellini, and R. Tempone, Numer. Math. 134, 343 (2016).

    Article  MathSciNet  Google Scholar 

  13. C. Altenhofen, M. Attene, O. Barrowclough, M. Chiumenti, M. Livesu, F. Marini, M. Martinelli, V. Skytt and L. Tamellini, Parametric shape optimization for combined additive-subtractive manufacturing,” (arXiv preprints, 2019). https://arxiv.org/abs/1907.01370. Accessed Oct. 2, 2019.

  14. M. McKay, R. Beckman, and W. Conover, Technometrics 21, 239 (1979).

    MathSciNet  Google Scholar 

  15. M. Buhmann, Radial Basis Functions: Theory and Implementations, 1st ed. (Cambridge: Cambridge University Press, 2003).

    Book  Google Scholar 

  16. F. Ballarin, A. Manzoni, A. Quarteroni, and G. Rozza, Int. J. Numer. Methods Eng. 102, 1136 (2014).

    Article  Google Scholar 

  17. C. Higham and D. Higham, Deep Learning: An Introduction for Applied Mathematicians (arXiv preprints, 2018). https://arxiv.org/abs/1801.05894. Accessed Oct. 2, 2019.

  18. J. Valentin and D. Pflüger, Hierarchical Gradient-Based Optimization with B-Splines on Sparse Grids, Sparse Grids and ApplicationsStuttgart 2014, ed. J. Garcke, D. Pflüger (Springer 2016), p. 315.

  19. E. Catmull and J. Clark, Comput. Aided Des. 10, 350 (1978).

    Article  Google Scholar 

  20. A. Fabri, M. Teillaud, CGAL, The Computational Geometry Algorithms Library (10ème Colloque National en Calcul des Structures, 2011), https://hal.archives-ouvertes.fr/CSMA2011/hal-00592685v1. Accessed Oct. 2, 2019.

  21. P.K.L. Hachenberger, L. Kettner, and K. Mehlhorn, Comput. Geom 38, 64 (2007).

    Article  MathSciNet  Google Scholar 

  22. R.Y.M. Laurent, Comput. Geom. Theory Appl. 38, 100 (2007).

    Article  Google Scholar 

  23. M. Chiumenti, X. Lin, M. Cervera, W. Lei, Y. Zheng, and W. Huang, Rapid Prototyp. J. 23, 448 (2017).

    Article  Google Scholar 

  24. E. Neiva, M. Chiumenti, M. Cervera, E. Salsi, G. Piscopo, S. Badia, A. Martin, Z. Chen, C. Lee and C. Davies, Numerical modelling of heat transfer and experimental validation in Powder-Bed Fusion with the Virtual Domain Approximation (arXiv preprints, 2018). https://arxiv.org/abs/1811.12372v4. Accessed Oct.2, 2019.

  25. I. Setien, M. Chiumenti, S. van der Veen, M. San Sebastian, F. Garciandía, and A. Echeverría, Comput. Math. Appl. 78, 2282 (2019).

    Article  MathSciNet  Google Scholar 

  26. M. Cervera, C. Agelet de Saracibar and M. Chiumenti, COMET: Coupled Mechanical and Thermal Analysis. Data Input Manual, Version 5.0 (CIMNE technical report IT-308, 2002). https://www.cimne.com/comet/cvdata/cntr1/dtos/mdia/COMET_Data_Input_manual.pdf. Accessed Oct. 2, 2019.

  27. CIMNE, Technical University of Catalonia, GiD: the Personal Pre and Post-Processor (2002). http://gid.cimne.upc.edu. Accessed Oct. 2, 2019.

  28. P.J. Besl and N.D. McKay, IEEE Trans. Pattern Anal. Mach. Intell. 14, 239 (1992).

    Article  Google Scholar 

  29. Docker Inc., Docker. www.docker.com. Accessed Oct. 2, 2019.

  30. The SG++ Project, SG++ (2008). http://sgpp.sparsegrids.org. Accessed Oct. 2, 2019.

  31. The CGAL Project, CGAL (1995). www.cgal.org. Accessed Oct. 2, 2019.

  32. SINTEF Digital, GoTools: Geometry Toolkit. https://github.com/SINTEF-Geometry/GoTools (2018). Accessed Oct. 2, 2019.

Download references

Acknowledgements

This work was funded by the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 680,448 CAxMan, Computer-Aided technologies for Additive Manufacturing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Tamellini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamellini, L., Chiumenti, M., Altenhofen, C. et al. Parametric Shape Optimization for Combined Additive–Subtractive Manufacturing. JOM 72, 448–457 (2020). https://doi.org/10.1007/s11837-019-03886-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03886-x

Navigation