Recycling of Spent Lead-Acid Battery for Lead Extraction with Sulfur Conservation

Abstract

This study proposed a cleaner pyrometallurgical lead-acid battery (LAB) recycling method for lead extraction and sulfur conservation without an excessive amount of SO2 generation. A reducing atmosphere was introduced to the lead paste recycling system to selectively reduce PbSO4 to PbS. At the same time, PbO and PbO2 components contained in the lead paste were also reduced to metallic Pb. Then, the intermediate PbS further reacted with a sulfur-fixing agent, typically Fe3O4, to generate PbO and FeS. Sulfur was transformed from PbSO4 to PbS and finally conserved as FeS. Thus, SO2 emissions and pollution were significantly eliminated. This work investigated the thermodynamic and experimental feasibility and phase conversion mechanism of this proposed method, the detailed lead extraction and sulfur fixing mechanisms were clarified, and the phase transformation and microstructural evolution processes were characterized. Additionally, a bench experiment of industrial, end-of-life LAB paste was conducted to detect the lead recovery and sulfur fixation efficiency.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    X. Tian, Y. Wu, Y. Gong, and T. Zuo, Waste Manag. Res. 33, 986 (2015).

    Article  Google Scholar 

  2. 2.

    Q. Zhang, Int. J. Electrochem. Sci. 8, 6457 (2013).

    Google Scholar 

  3. 3.

    A.D. Ballantyne, J.P. Hallett, D.J. Riley, N. Shah, and D.J. Payne, R. Soc. Open Sci. 5, 171368 (2018).

    Article  Google Scholar 

  4. 4.

    R. Prengaman and A. Mirza, Lead-Acid Batteries for Future Automobiles (Amsterdam: Elsevier, 2017), p. 575.

    Google Scholar 

  5. 5.

    Z. Sun, H. Cao, X. Zhang, X. Lin, W. Zheng, G. Cao, Y. Sun, and Y. Zhang, Waste Manag. 64, 190 (2017).

    Article  Google Scholar 

  6. 6.

    D. Lin and K. Qiu, Waste Manag. 31, 1547 (2011).

    Article  Google Scholar 

  7. 7.

    T.W. Ellis and A.H. Mirza, J. Power Sources 195, 4525 (2010).

    Article  Google Scholar 

  8. 8.

    M.A. Kreusch, M.J.J.S. Ponte, H.A. Ponte, N.M.S. Kaminari, C.E.B. Marino, and V. Mymrin, Resour. Conserv. Recycl. 52, 368 (2007).

    Article  Google Scholar 

  9. 9.

    C.J. Higgins, H.S. Matthews, C.T. Hendrickson, and M.J. Small, Transp. Res. D: Transp. Environ. 12, 103 (2007).

    Article  Google Scholar 

  10. 10.

    X. Zhang, L. Li, E. Fan, Q. Xue, Y. Bian, F. Wu, and R. Chen, Chem. Soc. Rev. 47, 7239 (2018).

    Article  Google Scholar 

  11. 11.

    Y. Li, S. Yang, W. Lin, P. Taskinen, J. He, Y. Wang, J. Shi, Y. Chen, C. Tang, and A. Jokilaakso, Minerals 9, 119 (2019).

    Article  Google Scholar 

  12. 12.

    E. Kim, J. Roosen, L. Horckmans, J. Spooren, K. Broos, K. Binnemans, K.C. Vrancken, and M. Quaghebeur, Hydrometallurgy 169, 589 (2017).

    Article  Google Scholar 

  13. 13.

    A. Singh and P. Karandikar, Microsyst. Technol. 23, 2263 (2017).

    Article  Google Scholar 

  14. 14.

    K. Liu, S. Liang, J. Wang, H. Hou, J. Yang, and J. Hu, ACS Sustain. Chem. Eng. 6, 17333 (2018).

    Article  Google Scholar 

  15. 15.

    T.J. Van der Kuijp, L. Huang, and C.R. Cherry, Environ. Health 12, 61 (2013).

    Article  Google Scholar 

  16. 16.

    X. Tian, Y. Wu, P. Hou, S. Liang, S. Qu, M. Xu, and T. Zuo, J. Clean. Prod. 144, 142 (2017).

    Article  Google Scholar 

  17. 17.

    M.L. Jaeck, Primary and Secondary Lead Processing: Proceedings of the International Symposium on Primary and Secondary Lead Processing, Halifax, Nova Scotia, August 2024, Elsevier, p. 113 (2013).

  18. 18.

    J. Wei, X. Guo, D. Marinova, and J. Fan, J. Clean. Prod. 64, 404 (2014).

    Article  Google Scholar 

  19. 19.

    M. Sonmez and R. Kumar, Hydrometallurgy 95, 53 (2009).

    Article  Google Scholar 

  20. 20.

    Y. Li, C. Tang, Y. Chen, S. Yang, L. Guo, J. He, and M. Tang, 8th International Symposium on High-Temperature Metallurgical Processing, TMS, San Diego, CA, US, March 2326, Springer, Cham, pp. 767 (2017).

  21. 21.

    L. Ye, C. Tang, Y. Chen, S. Yang, J. Yang, and W. Zhang, J. Clean. Prod. 93, 134 (2015).

    Article  Google Scholar 

  22. 22.

    B. Toby, J. Appl. Crystallogr. 38, 1040 (2005).

    Article  Google Scholar 

  23. 23.

    Y. Li, S. Yang, P. Taskinen, J. He, F. Liao, R. Zhu, Y. Chen, C. Tang, Y. Wang, and A. Jokilaakso, J. Clean. Prod. 217, 162 (2019).

    Article  Google Scholar 

  24. 24.

    Y. Li, Doctoral Thesis, Aalto University, Finland, p. 45 (2019).

  25. 25.

    A. Roine, HSC Chemistry for Windows, vers. 9.2.6, Outotec Research, Pori, Finland, 2019. www.hsc-chemistry.com. Accessed 26 Oct 2019.

  26. 26.

    Y. Li, S. Yang, P. Taskinen, Y. Chen, C. Tang, and A. Jokilaakso, Metals 9, 911 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Specialized Research Project of Guangdong Provincial Applied Science and Technology, China (Grant No. 2016B020242001); Hunan Provincial Science Fund for Distinguished Young Scholars, China (Grant No. 2018JJ1044); National Natural Science Foundation of China (Grant Nos. 51234009 and 51604105); SYMMET (Grant No. 211744).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chaobo Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yang, S., Taskinen, P. et al. Recycling of Spent Lead-Acid Battery for Lead Extraction with Sulfur Conservation. JOM 72, 3186–3194 (2020). https://doi.org/10.1007/s11837-019-03885-y

Download citation