Skip to main content
Log in

Recent Studies on the Microstructural Response of Nanotwinned Metals to In Situ Heavy Ion Irradiation

  • Advanced Characterization and Testing of Irradiated Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nanotwinned metals are potential radiation-tolerant materials because they contain high-density coherent and incoherent twin boundaries that may serve as sinks to radiation-induced defects. The behavior of nanotwinned metals subject to ex situ and in situ irradiation remains however largely unexploited. This article offers an overview of the recent studies on the microstructural response of nanotwinned metals to in situ heavy ion irradiation, focusing on the interactions of defect clusters with twin boundaries and the radiation-induced twin boundary migration. Several radiation-tolerant nanotwinned metals are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.J. Zinkle and G. Was, Acta Mater. 61, 735–758 (2013).

    Google Scholar 

  2. G.S. Was, J. Nucl. Mater. 367, 11–20 (2007).

    Google Scholar 

  3. B. Singh, A. Horsewell, P. Toft, and D. Edwards, J. Nucl. Mater. 224, 131–140 (1995).

    Google Scholar 

  4. S.J. Zinkle and K. Farrell, J. Nucl. Mater. 168, 262–267 (1989).

    Google Scholar 

  5. B.N. Singh, M. Eldrup, S. Zinkle, and S. Golubov, Philos. Mag. A 82, 1137–1158 (2002).

    Google Scholar 

  6. M.L. Jenkins and M.A. Kirk, Characterisation of radiation damage by transmission electron microscopy (Boca Raton: CRC Press, 2000).

    Google Scholar 

  7. S. Ishino, J. Nucl. Mater. 251, 225–236 (1997).

    Google Scholar 

  8. J. Hinks, Nucl. Instrum. Methods Phys. Res. Sect. B 267, 3652–3662 (2009).

    Google Scholar 

  9. D. Pashley and A. Presland, Philos. Mag. 6, 1003–1012 (1961).

    Google Scholar 

  10. B. Eyre, J. Phys. F Met. Phys. 3, 422 (1973).

    Google Scholar 

  11. Y. Matsukawa and S.J. Zinkle, Science 318, 959–962 (2007).

    Google Scholar 

  12. C. Taylor, B. Muntifering, C. Snow, K. Hattar, and D. Senor, Microsc. Microanal. 23, 2216–2217 (2017).

    Google Scholar 

  13. I. Beyerlein, A. Caro, M. Demkowicz, N. Mara, A. Misra, and B. Uberuaga, Mater. Today 16, 443–449 (2013).

    Google Scholar 

  14. X. Zhang, K. Hattar, Y. Chen, L. Shao, J. Li, C. Sun, K. Yu, N. Li, M.L. Taheri, and H. Wang, Prog. Mater. Sci. 96, 217–321 (2018).

    Google Scholar 

  15. T. Shen, Nucl. Instrum. Methods Phys. Res. Sect. B 266, 921–925 (2008).

    Google Scholar 

  16. S.J. Zinkle and L.L. Snead, Annu. Rev. Mater. Res. 44, 241–267 (2014).

    Google Scholar 

  17. I. Beyerlein, M. Demkowicz, A. Misra, and B. Uberuaga, Prog. Mater Sci. 74, 125–210 (2015).

    Google Scholar 

  18. K.Y. Yu, Y. Liu, C. Sun, H. Wang, L. Shao, E. Fu, and X. Zhang, J. Nucl. Mater. 425, 140–146 (2012).

    Google Scholar 

  19. G. Vetterick, O. El-Atwani, J.K. Baldwin, M. Tonks, and M. Taheri, J. Nucl. Mater. 481, 62–65 (2016).

    Google Scholar 

  20. C. Sun, S. Zheng, C. Wei, Y. Wu, L. Shao, Y. Yang, K. Hartwig, S. Maloy, S. Zinkle, and T. Allen, Sci. Rep. 5, 7801 (2015).

    Google Scholar 

  21. D. Kaoumi, A. Motta, and R. Birtcher, J. Appl. Phys. 104, 073525 (2008).

    Google Scholar 

  22. G. Cheng, W. Xu, Y. Wang, A. Misra, and Y. Zhu, Scr. Mater. 123, 90–94 (2016).

    Google Scholar 

  23. C. Du, S. Jin, Y. Fang, J. Li, S. Hu, T. Yang, Y. Zhang, J. Huang, G. Sha, and Y. Wang, Nat. Commun. 9, 5389 (2018).

    Google Scholar 

  24. K.Y. Yu, Y. Chen, J. Li, Y. Liu, H. Wang, M.A. Kirk, M. Li, and X. Zhang, Nano Lett. 16, 7481–7489 (2016).

    Google Scholar 

  25. M. Demkowicz, R. Hoagland, and J. Hirth, Phys. Rev. Lett. 100, 136102 (2008).

    Google Scholar 

  26. A. Misra, M. Demkowicz, X. Zhang, and R. Hoagland, JOM 59, 62–65 (2007).

    Google Scholar 

  27. K.Y. Yu, C. Sun, Y. Chen, Y. Liu, H. Wang, M. Kirk, M. Li, and X. Zhang, Philos. Mag. 93, 3547–3562 (2013).

    Google Scholar 

  28. Y. Chen, N. Li, D.C. Bufford, J. Li, K. Hattar, H. Wang, and X. Zhang, J. Nucl. Mater. 475, 274–279 (2016).

    Google Scholar 

  29. T. Höchbauer, A. Misra, K. Hattar, and R. Hoagland, J. Appl. Phys. 98, 123516 (2005).

    Google Scholar 

  30. E. Fu, J. Carter, G. Swadener, A. Misra, L. Shao, H. Wang, and X. Zhang, J. Nucl. Mater. 385, 629–632 (2009).

    Google Scholar 

  31. N. Li, E. Fu, H. Wang, J. Carter, L. Shao, S. Maloy, A. Misra, and X. Zhang, J. Nucl. Mater. 389, 233–238 (2009).

    Google Scholar 

  32. K.Y. Yu, Z. Fan, Y. Chen, M. Song, Y. Liu, H. Wang, M. Kirk, M. Li, and X. Zhang, Mater. Res. Lett. 3, 35–42 (2015).

    Google Scholar 

  33. K.Y. Yu, Y. Liu, E. Fu, Y. Wang, M. Myers, H. Wang, L. Shao, and X. Zhang, J. Nucl. Mater. 440, 310–318 (2013).

    Google Scholar 

  34. G. Odette, M. Alinger, and B. Wirth, Annu. Rev. Mater. Res. 38, 471–503 (2008).

    Google Scholar 

  35. S. Ukai and M. Fujiwara, J. Nucl. Mater. 307, 749–757 (2002).

    Google Scholar 

  36. S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, K. Asabe, T. Nishida, and M. Fujiwara, J. Nucl. Mater. 204, 65–73 (1993).

    Google Scholar 

  37. E.M. Bringa, J. Monk, A. Caro, A. Misra, L. Zepeda-Ruiz, M. Duchaineau, F. Abraham, M. Nastasi, S. Picraux, and Y. Wang, Nano Letters 12, 3351–3355 (2011).

    Google Scholar 

  38. E. Fu, M. Caro, L. Zepeda-Ruiz, Y. Wang, K. Baldwin, E. Bringa, M. Nastasi, and A. Caro, Appl. Phys. Lett. 101, 191607 (2012).

    Google Scholar 

  39. J. Li, C. Fan, J. Ding, S. Xue, Y. Chen, Q. Li, H. Wang, and X. Zhang, Sci. Rep. 7, 39484 (2017).

    Google Scholar 

  40. C. Sun, D. Bufford, Y. Chen, M. Kirk, Y. Wang, M. Li, H. Wang, S. Maloy, and X. Zhang, Sci. Rep. 4, 3737 (2014).

    Google Scholar 

  41. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Science 304, 422–426 (2004).

    Google Scholar 

  42. O. Anderoglu, A. Misra, H. Wang, F. Ronning, M. Hundley, and X. Zhang, Appl. Phys. Lett. 93, 083108 (2008).

    Google Scholar 

  43. D. Bufford, H. Wang, and X. Zhang, Acta Mater. 59, 93–101 (2011).

    Google Scholar 

  44. I.J. Beyerlein, X. Zhang, and A. Misra, Annu. Rev. Mater. Res. 44, 329–363 (2014).

    Google Scholar 

  45. M.J. Demkowicz, O. Anderoglu, X. Zhang, and A. Misra, J. Mater. Res. 26, 1666–1675 (2011).

    Google Scholar 

  46. W. Han, M. Demkowicz, E. Fu, Y. Wang, and A. Misra, Acta Mater. 60, 6341–6351 (2012).

    Google Scholar 

  47. R. Segall, Acta Metall. 12, 117–119 (1964).

    Google Scholar 

  48. A.H. King and D. Smith, Philos. Mag. A 42, 495–512 (1980).

    Google Scholar 

  49. M. Makin, A. Whapham, and F. Minter, Philos. Mag. 6, 465–468 (1961).

    Google Scholar 

  50. D. Norris, Philos. Mag. 23, 135–152 (1971).

    Google Scholar 

  51. R. Jahn and A. King, Philos. Mag. A 54, L3–L7 (1986).

    Google Scholar 

  52. M. Niewczas and R. Hoagland, Philos. Mag. 89, 727–746 (2009).

    Google Scholar 

  53. K.Y. Yu, D. Bufford, C. Sun, Y. Liu, H. Wang, M. Kirk, M. Li, and X. Zhang, Nat. Commun. 4, 1377 (2013).

    Google Scholar 

  54. Y. Chen, J. Li, K.Y. Yu, H. Wang, M. Kirk, M. Li, and X. Zhang, Acta Mater. 111, 148–156 (2016).

    Google Scholar 

  55. J. Li, K.Y. Yu, Y. Chen, M. Song, H. Wang, M. Kirk, M. Li, and X. Zhang, Nano Letters 15, 2922–2927 (2015).

    Google Scholar 

  56. K.Y. Yu, D. Bufford, F. Khatkhatay, H. Wang, M. Kirk, and X. Zhang, Scr. Mater. 69, 385–388 (2013).

    Google Scholar 

  57. Y. Chen, H. Wang, M.A. Kirk, M. Li, J. Wang, and X. Zhang, Scr. Mater. 130, 37–41 (2017).

    Google Scholar 

  58. Y. Chen, K.Y. Yu, Y. Liu, S. Shao, H. Wang, M. Kirk, J. Wang, and X. Zhang, Nat. Commun. 6, 7036 (2015).

    Google Scholar 

  59. Y. Chen, X. Zhang, and J. Wang, JOM 68, 235–241 (2016).

    Google Scholar 

  60. C. Fan, Y. Chen, J. Li, J. Ding, H. Wang, and X. Zhang, J. Nucl. Mater. 496, 293–300 (2017).

    Google Scholar 

  61. C. Fan, Q. Li, J. Ding, Y. Liang, Z. Shang, J. Li, R. Su, J. Cho, D. Chen, and Y. Wang, Acta Mater. 165, 142–152 (2019).

    Google Scholar 

  62. C. Fan, D. Xie, J. Li, Z. Shang, Y. Chen, S. Xue, J. Wang, M. Li, A. El-Azab, and H. Wang, Acta Mater. 167, 248–256 (2019).

    Google Scholar 

  63. J. Li, Y. Chen, H. Wang, and X. Zhang, Metall. Mater. Trans. A 48, 1466–1473 (2017).

    Google Scholar 

  64. J. Li, D. Xie, S. Xue, C. Fan, Y. Chen, H. Wang, J. Wang, and X. Zhang, Acta Mater. 151, 395–405 (2018).

    Google Scholar 

  65. N. Li, J. Wang, J. Huang, A. Misra, and X. Zhang, Scr. Mater. 64, 149–152 (2011).

    Google Scholar 

  66. X. Xiao, D. Song, H. Chu, J. Xue, and H. Duan, Int. J. Plast. 74, 110–126 (2015).

    Google Scholar 

  67. J. Du, Z. Wu, E. Fu, Y. Liang, X. Wang, P. Wang, K. Yu, X. Ding, M. Li, and M. Kirk, Sci. Technol. Adv. Mater. 19, 212–220 (2018).

    Google Scholar 

  68. C. Fan, J. Li, Z. Fan, H. Wang, and X. Zhang, Metall. Mater. Trans. A 48, 5172–5180 (2017).

    Google Scholar 

  69. G.M. de Bellefon, I. Robertson, T. Allen, J.-C. van Duysen, and K. Sridharan, Scr. Mater. 159, 123–127 (2019).

    Google Scholar 

  70. J. Wang, O. Anderoglu, J. Hirth, A. Misra, and X. Zhang, Appl. Phys. Lett. 95, 021908 (2009).

    Google Scholar 

  71. J. Wang, N. Li, and A. Misra, Philos. Mag. 93, 315–327 (2013).

    Google Scholar 

  72. J. Wang and H. Huang, Appl. Phys. Lett. 88, 203112 (2006).

    Google Scholar 

  73. J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J. Huang, and J. Hirth, Acta Mater. 58, 2262–2270 (2010).

    Google Scholar 

  74. J. Wang, A. Misra, and J. Hirth, Phys. Rev. B 83, 064106 (2011).

    Google Scholar 

  75. Y. Wang and M. Sui, Appl. Phys. Lett. 94, 021909 (2009).

    Google Scholar 

  76. Y.M. Wang, F. Sansoz, T. LaGrange, R.T. Ott, J. Marian, T.W. Barbee Jr, and A.V. Hamza, Nat. Mater. 12, 697–702 (2013).

    Google Scholar 

  77. M. Kiritani, Story of stacking fault tetrahedra. Mater. Chem. Phys. 50, 133–138 (1997).

    Google Scholar 

  78. R. Schäublin, Z. Yao, N. Baluc, and M. Victoria, Philos. Mag. 85, 769–777 (2005).

    Google Scholar 

  79. B.N. Singh, S.I. Golubov, H. Trinkaus, D.J. Edwards, and M. Eldrup, J. Nucl. Mater. 328, 77–87 (2004).

    Google Scholar 

  80. N. Li, J. Wang, A. Misra, X. Zhang, J. Huang, and J. Hirth, Acta Mater. 59, 5989–5996 (2011).

    Google Scholar 

  81. Y. Liu, J. Jian, Y. Chen, H. Wang, and X. Zhang, Appl. Phys. Lett. 104, 231910 (2014).

    Google Scholar 

Download references

Acknowledgement

K.Y. acknowledges financial support from the National Natural Science Foundation of China (NSFC 51871241). X.Z. acknowledges financial support from NSF-DMR-Metallic Materials and Nanostructures Program under Grant No. 1643915 and partial support by NSF under Grant Nos. 1611380 and 1728419. The IVEM facility at Argonne National Laboratory is supported by the DOE Office of Nuclear Energy, USA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Y. Yu or X. Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, K.Y., Fan, C., Chen, Y. et al. Recent Studies on the Microstructural Response of Nanotwinned Metals to In Situ Heavy Ion Irradiation. JOM 72, 160–169 (2020). https://doi.org/10.1007/s11837-019-03883-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03883-0

Navigation