Skip to main content
Log in

Separation and Extraction of Valuable Metals from Electroplating Sludge by Carbothermal Reduction and Low-Carbon Reduction Refining

  • Cleaner Manufacturing of Critical Metals
  • Published:
JOM Aims and scope Submit manuscript

A Correction to this article was published on 04 August 2020

This article has been updated

Abstract

This paper proposes an innovative carbothermal reduction roasting low-carbon redox refining process for recovering valuable metals, including copper, zinc, nickel, tin and lead, from electroplating sludge. First, the valuable metals are volatilized into the flue gas by carbothermal reduction roasting. At a reduction temperature of 1473 K, a carbon content of 20%, and a reaction time of 60 min, the ratio of Pb, Sn and Zn removal reached 90.77%, 95.14% and 99.92%, respectively. At an oxidation temperature of 1573 K, a SiO2 content of 6% and a reaction time of 180 min, a water-quenching slag suitable for building materials was obtained by low-carbon oxidation reduction refining. Finally, at a reduction temperature of 1473 K, 8% C addition, and a reaction time of 20 min, copper and nickel were enriched on an anode copper plate and the copper content reached more than 98%, meeting the requirements for copper electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 04 August 2020

    Mudan Liu���s name appeared incorrectly on the original publication of this article. It appears correctly here.

References

  1. D. Kuchar, T. Fukuta, M.S. Onyango, and H. Matsuda, J. Hazard. Mater. 138, 86 (2006).

    Article  Google Scholar 

  2. M.Y. Pamukoglu and F. Kargi, Environ. Eng. Sci. 25, 1159 (2008).

    Article  Google Scholar 

  3. C. Zhou, S. Ge, H. Yu, T. Zhang, H. Cheng, Q. Sun, and R. Xiao, J. Clean. Prod. 177, 699 (2018).

    Article  Google Scholar 

  4. W. Xu, W. Liu, H.C. Zhu, J.C. Xu, G.M. Li, D. Fu, and L. Luo, Pol. J. Environ. Stud. 24, 367 (2015).

    Article  Google Scholar 

  5. E. Radzymińska-Lenarcik, M. Sulewski, and W. Urbaniak, Pol. J. Environ. Stud. 24, 1277 (2015).

    Article  Google Scholar 

  6. F.C. Chang, S.L. Lo, and C.H. Ko, Sep. Purif. Technol. 53, 49 (2007).

    Article  Google Scholar 

  7. V. Sethu, A. Aziz, and M. Aroua, Clean Technol. Environ. Policy 10, 131 (2008).

    Article  Google Scholar 

  8. J. Jandova, T. Stefanova, and R. Niemczykova, Hydrometallurgy 57, 77 (2008).

    Article  Google Scholar 

  9. E. De Souza, P.T. Silva, N.T. De Mello, M.M. Menezes Duarte, M.C.B.S.M. Montenegro, A.N. Araújo, B. De Barros Neto, and V.L. Da Silva, J. Hazard. Mater. 128, 39 (2006).

    Article  Google Scholar 

  10. R.J. Su, B. Liang, and J. Guan, Proc. Environ. Sci. 31, 361 (2016).

    Article  Google Scholar 

  11. C. Li, F. Xie, Y. Ma, T. Cai, H. Li, Z. Huang, and G. Yuan, J. Hazard. Mater. 178, 823 (2010).

    Article  Google Scholar 

  12. C. Wang, Chem. Environ. Protect. 32, 25 (2012) (in Chinese).

    Google Scholar 

  13. F. Vegliò, R. Quaresima, and P. Fornari, Waste Manag 3, 245 (2003).

    Article  Google Scholar 

  14. S. Wang, Aqueous Process 60, 41 (2008).

    Google Scholar 

  15. P. Sarker and M.N. Huda, Comput. Mater. Sci. 111, 359 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support were provided by the National Nature Science Foundation of China (Nos. 51804136 and 51764016), Jiangxi Province Nature Science Foundation (No. 20181BAB216017), China Postdoctoral Science Foundation (Nos. 2019T120625 and 2019M652276), Key Projects of Jiangxi Key R&D Plan (No. 20192ACB70017), Jiangxi Science and Technology Landing Project (No. KJLD13046), Funded by the Research Fund Program of State Key Laboratory of Rare Metals Separation and Comprehensive Utilization (No. GK-201803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Feng Xu or Yong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, L., Chen, L., Gong, A. et al. Separation and Extraction of Valuable Metals from Electroplating Sludge by Carbothermal Reduction and Low-Carbon Reduction Refining. JOM 72, 782–789 (2020). https://doi.org/10.1007/s11837-019-03880-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03880-3

Navigation