Skip to main content

The Effect of Oxygen Addition on Microstructure and Mechanical Properties of Various Beta-Titanium Alloys

Abstract

Simultaneously achieving high strength and low Young’s modulus is essential for implant materials due to the “stress-shielding effect”. In this work, the mechanical properties and microstructure of various beta-titanium alloys based on the Ti-Nb system with additions of Zr, Ta and Sn have been studied. Those alloys were prepared via the arc melting process. Thermo-mechanical processing (i.e., hot forging, solution treatment and cold swaging) has been performed. The alloys exhibited low Young’s modulus around 50 GPa (43 GPa was the lowest measured value) and tensile strength around 800 MPa. The tensile strength was increased via aging treatment (450°C/8 h) to 985 MPa while the modulus increased to 75 GPa. On the other hand the addition of 0.4 wt.% of oxygen seems to be more beneficial as the tensile strength reached values as high as 1225 MPa and simultaneously maintained low Young’s modulus (~ 62 GPa) and sufficient elongation (~ 8%).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. N.S. Manam, W.S.W. Harun, D.N.A. Shri, S.A.C. Ghani, T. Kurniawan, M.H. Ismail, and M.H.I. Ibrahim, J. Alloys Compd. 701, 698 (2017).

    Google Scholar 

  2. A. Biesiekierski, J. Wang, M.A.-H. Gepreel, and C. Wen, Acta Biomater. 8, 1661 (2012).

    Google Scholar 

  3. J.M. Cordeiro and V.A.R. Barao, Mater. Sci. Eng., C 71, 1201 (2017).

    Google Scholar 

  4. D.F. Williams, Biomaterials 29, 2941 (2008).

    Google Scholar 

  5. N. Yamamoto, K. Ohno, K. Hayashi, H. Kuriyama, K. Yasuda, and K. Kaneda, J. Biomech. Eng. Asme 115, 23 (1993).

    Google Scholar 

  6. R. Huiskes, H. Weinans, and B. Van Rietbergen, Clin. Orthop. Relat. Res. 274, 124 (1992).

    Google Scholar 

  7. M.C. Kennady, M.R. Tucker, G.E. Lester, and M.J. Buckley, Int. J. Oral Maxillofac. Surg. 18, 307 (1989).

    Google Scholar 

  8. L. Kunčická, R. Kocich, and T.C. Lowe, Prog. Mater Sci. 88, 232 (2017).

    Google Scholar 

  9. M. Niinomi and M. Nakai, Int. J. Biomater. 2011, 836587 (2011).

    Google Scholar 

  10. J. Málek, F. Hnilica, J. Veselý, B. Smola, S. Bartáková, and J. Vaněk, Mater. Des. 35, 731 (2012).

    Google Scholar 

  11. M.A.-H. Gepreel and M. Niinomi, J. Mech. Behav. Biomed. Mater. 20, 407 (2013).

    Google Scholar 

  12. Y.-H. Hon, J.-Y. Wang, and Y.-N. Pan, Mater. Trans. 44, 2384 (2003).

    Google Scholar 

  13. M. Nakai, M. Niinomi, T. Akahori, H. Tsutsumi, and M. Ogawa, Mater. Trans. 50, 2716 (2009).

    Google Scholar 

  14. L. Kang and C. Yang, Adv. Eng. Mater. 21, 1801359 (2019).

    Google Scholar 

  15. L. Li, J. Li, Y. He, W. Yi, H. Kou, and J. Wang, J. Alloys Compd. 784, 220 (2019).

    Google Scholar 

  16. Y.J. Hwang, S.H. Hong, Y.S. Kim, H.J. Park, Y.B. Jeong, J.T. Kim, and K.B. Kim, J. Alloys Compd. 737, 53 (2018).

    Google Scholar 

  17. S.H. Hong, Y.J. Hwang, S.W. Park, ChH Park, J. Yeom, J.M. Park, and K.B. Kim, J. Alloys Compd. 793, 271 (2019).

    Google Scholar 

  18. T. Ando, K. Nakashima, T. Tsuchiyama, and S. Takaki, Mater. Sci. Eng., A 486, 228 (2008).

    Google Scholar 

  19. F. Geng, M. Niinomi, and M. Nakai, Mater. Sci. Eng., A 528, 5435 (2011).

    Google Scholar 

  20. M. Tane, T. Nakano, S. Kuramoto, M. Hara, M. Niinomi, N. Takesue, T. Yano, and H. Nakajima, Acta Mater. 59, 6975 (2011).

    Google Scholar 

  21. Q. Yu, R. Traylor, D. Rugg, M. Asta, D.C. Chrzan, and A.M. Minor, Science 347, 635 (2015).

    Google Scholar 

  22. Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T. Nieh, and Z. Lu, Nature 563, 546 (2018).

    Google Scholar 

  23. M. Yan, W. Xu, M.S. Dargusch, H.P. Tang, M. Brandt, and M. Qian, Powder Metall. 57, 251 (2014).

    Google Scholar 

  24. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro, Mater. Sci. Eng., A 243, 244 (1998).

    Google Scholar 

  25. J. Málek, F. Hnilica, J. Veselý, B. Smola, S. Bartáková, and J. Vaněk, Mater. Charact. 66, 75 (2012).

    Google Scholar 

  26. F. Hnilica, J. Málek, and J. Veselý, Key Eng. Mater. 647, 79 (2015).

    Google Scholar 

  27. J. Málek, F. Hnilica, J. Veselý, B. Smola, K. Kolařík, J. Fojt, M. Vlach, and V. Kodetová, Mater. Sci. Eng., A 675, 1 (2016).

    Google Scholar 

  28. M. Tane, T. Nakano, S. Kuramoto, M. Niinomi, N. Takesue, and H. Nakajima, Acta Mater. 61, 139 (2013).

    Google Scholar 

  29. X. Ji, S. Emura, T. Liu, K. Suzuta, X. Min, and K. Tsuchiya, J. Alloys Compd. 737, 221 (2018).

    Google Scholar 

  30. M. Tahara, H.Y. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, Acta Mater. 59, 6208 (2011).

    Google Scholar 

  31. M. Besse, P. Castany, and T. Gloriant, Acta Mater. 59, 5982 (2011).

    Google Scholar 

  32. M. Tahara, H.Y. Kim, H. Hosoda, T.H. Nam, and S. Miyazaki, Mater. Sci. Eng., A 527, 6844 (2010).

    Google Scholar 

  33. M. Tane, T. Nakano, S. Kuramoto, M. Hara, M. Niinomi, N. Takesue, T. Yano, and H. Nakajima, Acta Mater. 58, 6790 (2010).

    Google Scholar 

  34. P. Majumdar, S.B. Singh, and M. Chakraborty, Mater. Sci. Eng., A 489, 419 (2008).

    Google Scholar 

  35. Q. Li, M. Niinomi, M. Nakai, Z. Cui, S. Zhu, and X. Yang, Mater. Sci. Eng., A 536, 197 (2012).

    Google Scholar 

  36. Y. Nii, T.H. Arima, H.Y. Kim, and S. Miyazaki, Phys. Rev. B 82, 1 (2010).

    Google Scholar 

  37. C. Lan, F. Chen, H. Chen, Y. Wu, and X. Wu, J. Mater. Sci. Technol. 34, 2100 (2018).

    Google Scholar 

  38. X. Min, P. Bai, S. Emura, X. Ji, C. Cheng, B. Jiang, and K. Tsuchiya, Mater. Sci. Eng. A 684, 534 (2017).

    Google Scholar 

  39. N. Takesue, Y. Shimizu, T. Yano, M. Hara, and S. Kuramoto, J. Cryst. Growth 311, 3319 (2009).

    Google Scholar 

  40. T. Li, D. Kent, G. Sha, M.S. Dargusch, and J.M. Cairney, Scr. Mater. 104, 75 (2015).

    Google Scholar 

  41. M. Abdel-Hady, K. Hinoshita, and M. Morinaga, Scr. Mater. 55, 477 (2006).

    Google Scholar 

  42. D. Raabe, B. Sander, M. Friák, D. Ma, and J. Neugebauer, Acta Mater. 55, 4475 (2007).

    Google Scholar 

  43. Y. Hao, M. Niinomi, D. Kuroda, K. Fukunaga, Y. Zhou, R. Yang, and A. Suzuki, Metall. Mater. Trans. A 33, 3137 (2002).

    Google Scholar 

  44. M. Awaji, H. Hashimoto, E. Sukedai, and F. Akao, Acta Crystallogr. Sect. B 48, 622 (1992).

    Google Scholar 

  45. M. Abdel-Hady, K. Hinoshita, H. Fuwa, Y. Murata, and M. Morinaga, Mater. Sci. Eng., A 480, 167 (2008).

    Google Scholar 

  46. M. Abdel-Hady, H. Fuwa, K. Hinoshita, H. Kimura, Y. Shinzato, and M. Morinaga, Scr. Mater. 57, 1000 (2007).

    Google Scholar 

  47. J. Malek, F. Hnilica, J. Veselý, K. Kolařík, and J. Čapek, in Metal 201524th International Conference on Metallurgy and Materials, Conference Proceedings, 1294 (2015).

  48. R.J. Talling, R.J. Dashwood, M. Jackson, and D. Dye, Acta Mater. 57, 1188 (2009).

    Google Scholar 

Download references

Acknowledgements

Authors would like to express thanks to the Czech Technology Agency for its financial support for this work [TE01020390], and to Ministry of Education, Youth and Sport of the Czech Republic program NPU1 [Project no. LO1207].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Málek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bartáková, S., Málek, J. & Prachár, P. The Effect of Oxygen Addition on Microstructure and Mechanical Properties of Various Beta-Titanium Alloys. JOM 72, 1656–1663 (2020). https://doi.org/10.1007/s11837-019-03879-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03879-w