Skip to main content
Log in

Structure and Properties of Al-0.6%Zr-0.4%Fe-0.4%Si (wt.%) Wire Alloy Manufactured by Electromagnetic Casting

  • Aluminum and Magnesium: New Alloys and Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The experimental Al-0.6%Zr-0.4%Fe-0.4%Si alloy has been manufactured by using the method of electromagnetic casting. It is shown that Zr is completely dissolved in the aluminum solid solution (Al) and iron is fully included in the Al8Fe2Si phase. The fine microstructure of the as-cast rod implies a high deformation plasticity, which has been experimentally confirmed during wire production. The cold-rolled wire has an ultimate tensile strength (UTS) ~ 260 MPa, and subsequent annealing at 400°C for 3 h slightly reduces the strength, which is associated with the stabilizing effect of the L12 (Al3Zr) phase nanoparticles formed during annealing. Annealing also leads to a significant increase in the specific conductivity, the value of which reaches 57.0 IACS. Drawing of the annealed rolled wire leads to significant strengthening. Annealing at 400°C leads to a marked strength reduction, which, however, remains high enough for conductive alloys (UTS higher than 200 MPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. ASTM B941-16, Standard specification for Heat Resistant Aluminum-Zirconium Alloy Wire for Electrical Purposes, ASTM International, West Conshohocken, PA, 2016.

  2. J.P. Brubak, B. Eftestol, and F. Ladiszlaidesz, Aluminium alloy, a method of making it and an application of the alloy (IFI CLAIMS Patent Services, 2019), https://patents.google.com/patent/US5067994A/en?oq=5067994. Accessed 30 April 2019.

  3. T. Knych, M. Jablonsky, and B. Smyrak, Arch. Metall. Mater. 54, 671 (2009).

    Google Scholar 

  4. I. Properzi, « Machine for the continuous casting of metal rods » , (IFI CLAIMS Patent Services, 2019), https://patents.google.com/patent/US2659949A/en?oq=2659949. Accessed 30 April 2019.

  5. Information on https://www.southwire.com. Accessed 30 April 2019.

  6. N.A. Belov, A.N. Alabin, I.A. Matveeva, and D.G. Eskin, Trans. Nonferrous Met. Soc. China (2015). https://doi.org/10.1016/S1003-6326(15)63907-3.

    Article  Google Scholar 

  7. E. Çadırlı, H. Tecer, M. Sahin, E. Yimaz, T. Kirindi, and M. Gündüz, J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.01.193.

    Article  Google Scholar 

  8. J.D. Robson and P.B. Prangnell, Acta Mater. (2001). https://doi.org/10.1016/S1359-6454(00)00351-7.

    Article  Google Scholar 

  9. K.E. Knipling, R.A. Karnesky, C.P. Lee, D.C. Dunand, and D.N. Seidman, Acta Mater. (2010). https://doi.org/10.1016/j.actamat.2010.05.054.

    Article  Google Scholar 

  10. A. Deschamp and P. Guyo, Acta Mater. (2007). https://doi.org/10.1016/j.actamat.2006.12.015.

    Article  Google Scholar 

  11. W. Lefebvre, F. Danoix, H. Hallem, B. Forbord, A. Bostel, and K. Marthinsen, J. Alloys Compd. (2009). https://doi.org/10.1016/j.jallcom.2008.02.043.

    Article  Google Scholar 

  12. B. Forbord, W. Lefebvre, F. Danoix, H. Hallem, and K. Marthinsen, Scr Mater. (2004). https://doi.org/10.1016/j.scriptamat.2004.03.033.

    Article  Google Scholar 

  13. E. Clouet, A. Barbu, L. Lae, and G. Martin, Acta Mater. 53, 2313 (2005).

    Article  Google Scholar 

  14. N.A. Belov, A.N. Alabin, D.G. Eskin, and and V.V. Istomin-Kastrovskiy, J. Mater. Sci. (2006) https://doi.org/10.1007/s10853-006-0265-7.

    Article  Google Scholar 

  15. N.A. Belov, A.N. Alabin, and A.A. Yakovlev, Izv. Vuzov. Tsvet. Metall. (Proc. Higher Schools Nonferr. Metal). (2013) https://doi.org/10.17073/0021-3438-2013-2-50-55.

  16. J.W. Evans, JOM, 47. Is. 5, 38 (1995).

    Google Scholar 

  17. A.A. Avdulov, G.P. Usynina, N.V. Sergeev, and I.S. Gudkov, Tsvet. Met. (2017). https://doi.org/10.17580/tsm.2017.07.12.

    Article  Google Scholar 

  18. V.I. Dobatkin, V.I. Elagin, and V.M. Fedorov. Bystrozakristallizovannye alyuminievye splavy (Rapidly Solidified Aluminum Alloys), (Moscow, M: VILS, 1995), pp. 43-59.

  19. S.I. Berman. Proizvodstvo granul iz splavov na osnove alyuminiya i pressovanie iz nih polufabrikatov (Production of granules from aluminum-based alloys and pressing of semi-finished products), (Moscow, M: Cvetmetinformaciya, 1971), pp. 101

  20. I.J. Polmear, Light Metals: From Traditional Alloys to Nanocrystals, 4th ed. (Oxford: Elsevier, 2006), pp. 188–193.

    Google Scholar 

  21. G. Zeer, M.V. Pervukhin, and E.G. Zelenkova, Met. Sci. Heat Treat. (2011). https://doi.org/10.1007/s11041-011-9370-6.

    Article  Google Scholar 

  22. N.A. Belov, D.G. Eskin, and A.A. Aksenov, Multicomponent phase diagrams: applications for commercial aluminum alloys (Amsterdam, NL: Elsevier, 2005), pp. 19–31.

    Google Scholar 

  23. M.V. Glazoff, A.V. Khvan, V.S. Zolotorevsky, N.A. Belov, and Alan T. Dinsdale, Casting Aluminum Alloys. Their Physical and Mechanical Metallurgy. (Oxford, UK: Elsevier, 2019), pp. 180-186.

  24. J.E. Hatch, eds., Aluminum—Properties and Physical Metallurgy (Metals Park, OH: ASM, 1984), pp. 59–64.

    Google Scholar 

  25. C. Booth-Morrison, Z. Mao, M. Diaz, D.C. Dunand, C. Wolwerton, and D.N. Seidman., Acta Mater. (2012). https://doi.org/10.1016/j.actamat.2012.05.036.

    Article  Google Scholar 

  26. N.A. Belov, N.O. Korotkova, A.N. Alabin, and S.S. Mishurov, Russ. J. Non-ferrous Metals. (2018). https://doi.org/10.3103/S1067821218030033.

    Article  Google Scholar 

  27. T. Gao, A. Ceguerra, A. Breen, X. Liu, Yu Wu, and S. Ringer, J. Alloys Comd. (2016). https://doi.org/10.1016/j.jallcom.2016.02.236.

    Article  Google Scholar 

  28. Information on http://www.npcmgd.com. Accessed 25 April 2019

  29. Information on http://www.thermocalc.com. Accessed 30 March 2019

  30. N.A. Belov, A.N. Alabin, and AYu Prokhorov, Russ. J. Non-ferrous Metals. (2009). https://doi.org/10.3103/S1067821209040099.

    Article  Google Scholar 

  31. L. Bäckerud, G. Chai, and J. Tamminen. Solidification Characteristics of Aluminum Alloys. Vol. 1: Foundry Alloys, (Oslo, NO: Skanaluminium, 1986), pp. 9-26.

  32. N.A. Belov, A.A. Aksenov, and D.G. Eskin, Iron in Aluminum Alloys: Impurity and Alloying Element (London: Fransis and Tailor, 2002), p. 360.

    Google Scholar 

  33. A. Školáková, P. Novák, D. Vojtěch, and T.F. Kubatík, Mater. Des. (2016). https://doi.org/10.1016/j.matdes.2016.06.069.

    Article  Google Scholar 

  34. H. Chen, Q. Chen, Y. Du, J. Brataberg, and A. Engstrom, Update of Al-Fe-Si, Al-Mn-Si and Al-Fe-Mn-Si thermodynamic descriptions. Trans. Nonferrous Met. Soc. China (2014). https://doi.org/10.1016/S1003-6326(14)63310-0.

    Article  Google Scholar 

  35. Y. Nasedkina, X. Sauvage, E.V. Bobruk, MYu Murashkin, R.Z. Valiev, and N.A. Enikeev, J. Alloys Comd. (2017). https://doi.org/10.1016/j.jallcom.2017.03.3120925-8388.

    Article  Google Scholar 

Download references

Acknowledgement

The study was carried out within the framework of the implementation of the Resolution of the Government of the Russian Federation of April 9, 2010 No. 220 (Contract No. 074-02-2018-329 from May 16, 2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torgom K. Akopyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, N.A., Korotkova, N.O., Akopyan, T.K. et al. Structure and Properties of Al-0.6%Zr-0.4%Fe-0.4%Si (wt.%) Wire Alloy Manufactured by Electromagnetic Casting. JOM 72, 1561–1570 (2020). https://doi.org/10.1007/s11837-019-03875-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03875-0

Navigation