Skip to main content
Log in

Reduction of Red Mud Discharge by Reductive Bayer Digestion: A Comparative Study and Industrial Validation

  • Bauxite to Aluminum: Advances, Automation, and Alternative Processes
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A novel design incorporating both reductive Bayer digestion and iron recovery into diasporic bauxite processing is proposed to remarkably reduce red mud discharge. This paper presents a comparative study on reductive versus typical Bayer digestion, after which an industrial validation test was carried out. During the test, relative alumina recovery of 98% and a reduction of 10.9% in the amount of red mud generated were achieved by substituting 2 wt.% iron powder for 10 wt.% lime of bauxite in the high-temperature digestion. Meanwhile, ~ 60% of the iron minerals were converted to magnetite by iron powder, meaning that processing the resulting red mud by magnetic separation could obtain iron concentrate with total iron concentration of 55.2% and iron recovery of 60.1%. The overall reduction of red mud discharge reached 50% for a ton of alumina. The proposed prototype is conducive to improve the Bayer process, aiming to achieve cleaner production of commercial alumina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X.F. Kong, M. Li, S.G. Xue, W. Hartley, C.R. Chen, C. Wu, X.F. Li, and Y.W. Li, J. Hazard. Mater. 324, 382 (2016).

    Article  Google Scholar 

  2. A.S. Wagh and B. Thompson, Phys. Scr. 37, 305 (2006).

    Article  Google Scholar 

  3. G. Power, M. Gräfe, and C. Klauber, Hydrometallurgy 108, 33 (2011).

    Article  Google Scholar 

  4. S.H. Ma, Z.G. Wen, J.N. Chen, and S.L. Zheng, Miner. Eng. 22, 793 (2009).

    Article  Google Scholar 

  5. T.A. Zhang, X.F. Zhu, G.Z. Lv, L. Pan, Y. Liu, Q.Y. Zhao, Y. Li, X.L. Jiang, and J.C. He, TMS Light Metals (San Antonio, USA, 2013), pp. 233–238.

  6. D. Tian, X.Y. Shen, Y.C. Zhai, P. Xiao, and P. Webley, J. Iron Steel Res. Int., 26, 578 (2019).

    Article  Google Scholar 

  7. T. Le, S.H. Ju, L.M. Lu, J.H. Peng, L.X. Zhou, and S.X. Wang, Hydrometallurgy 169, 123 (2017).

    Article  Google Scholar 

  8. H. Pedersen, Process of manufacturing aluminium hydroxide, US Patent 1,618,105, 15 February 1927.

  9. H. Sellaeg, L. Kolbeinsen, and J. Safarian, TMS Light Metals (San Diego, USA, 2017), pp. 127–134.

  10. Y.J. Liu and R. Naidu, Waste Manag. 34, 2662 (2014).

    Article  Google Scholar 

  11. A.S. Verma, N.M. Suri, and S. Kant, Waste Manag. Res. 35, 999 (2017).

    Article  Google Scholar 

  12. H. Kahn, M.M.L. Tassinari, and G. Ratti, Miner. Eng. 16, 1313 (2003).

    Article  Google Scholar 

  13. B. Gibson, D.G. Wonyen, and S.C. Chelgani, Miner. Eng. 114, 64 (2017).

    Article  Google Scholar 

  14. F.Q. Gu, G.H. Li, Z.W. Peng, J. Luo, B.N. Deng, M.J. Rao, Y.B. Zhang, and T. Jiang, JOM 70, 1893 (2018).

    Article  Google Scholar 

  15. C.A. Pickles, T. Lu, B. Chambers, and J. Forster, Can. Metall. Q. 51, 424 (2013).

    Article  Google Scholar 

  16. N. Papassiopi, K. Vaxevanidou, and I. Paspaliaris, Miner. Eng. 23, 25 (2010).

    Article  Google Scholar 

  17. G.H. Li, F.Q. Gu, T. Jiang, J. Luo, B.N. Deng, and Z.W. Peng, JOM 69, 1 (2016).

    Google Scholar 

  18. E. Ercagt and R. Apak, Chem. Technol. Biotechnol. 241, 70 (1997).

    Google Scholar 

  19. F.M. Kaußen and B. Friedrich, Hydrometallurgy 49, 176 (2018).

    Google Scholar 

  20. W.C. Liu, S.Y. Sun, L. Zhang, S. Jahanshahi, and J.K. Yang, Miner. Eng. 39, 213 (2012).

    Article  Google Scholar 

  21. G.H. Li, M.X. Liu, M.J. Rao, T. Jiang, J.Q. Zhuang, and Y.B. Zhang, J. Hazard. Mater. 280, 774 (2014).

    Article  Google Scholar 

  22. X.B. Li, W. Xiao, W. Liu, G.H. Liu, Z.H. Peng, Q.S. Zhou, and T.G. Qi, Trans. Nonferrous Metal Soc. 19, 1342 (2009).

    Article  Google Scholar 

  23. L. Zhong, Y.F. Zhang, and Y. Zhang, J. Hazard. Mater. 172, 1629 (2009).

    Article  Google Scholar 

  24. R. Zhang, S.L. Zheng, S.H. Ma, and Y. Zhang, J. Hazard. Mater. 189, 827 (2011).

    Article  Google Scholar 

  25. W. Liu, Master’s dissertation. Central South University (2005).

  26. R.B. Li, T.A. Zhang, Y. Liu, G.Z. Lv, and L.Q. Xie, J. Hazard. Mater. 316, 94 (2016).

    Article  Google Scholar 

  27. R.A. Pepper, S.J. Couperthwaite, and G.J. Millar, Miner. Eng. 99, 8 (2016).

    Article  Google Scholar 

  28. Y.R. Li, J. Wang, X.J. Wang, B.Q. Wang, and Z.K. Luan, Phys. C Supercond. 471, 91 (2011).

    Article  Google Scholar 

  29. Y. Wang, Y. Hu, P. He, and G. Gu, Miner. Eng. 17, 63 (2004).

    Article  Google Scholar 

  30. L.Y. Li, Waste Manag. 21, 525 (2001).

    Article  Google Scholar 

  31. X.B. Li, Y.L. Wang, Q.S. Zhou, T.G. Qi, G.H. Liu, Z.H. Peng, and H.Y. Wang, Trans. Nonferrous Metal Soc. 27, 2715 (2017).

    Article  Google Scholar 

  32. X.B. Li, Y.L. Wang, Q.S. Zhou, T.G. Qi, G.H. Liu, Z.H. Peng, and H.Y. Wang, Hydrometallurgy 175, 257 (2018).

    Article  Google Scholar 

  33. G. Baksa, F. Vallo, F. Sitkei, J. Zoldi, and K. Solymar, Light Met. 75 (1986).

  34. S.S. Al-Jaroudi, A. Ul-Hamid, A.R.I. Mohammed, and S. Saner, Powder Technol. 175, 115 (2007).

    Article  Google Scholar 

  35. P. Smith, Hydrometallurgy 170, 16 (2017).

    Article  Google Scholar 

  36. Y.F. Li, Thermodynamic database for alumina production (School of Metallurgy and Environment, Central South University, Changsha, China, 2006). http://smse.csu.edu.cn/Xf/Content.aspx?moduleid=C29C7981-B376-4692-8900-4D43CF13D21A. Accessed 15 June 2019.

  37. Y.L. Wang, X.B. Li, B. Wang, Q.S. Zhou, T.G. Qi, G.H. Liu, and Z.H. Peng, Hydrometallurgy 184, 192 (2019).

    Article  Google Scholar 

  38. Y.L. Wang, X.B. Li, Q.S. Zhou, T.G. Qi, G.H. Liu, Z.H. Peng, and K.C. Zhou, Hydrometallurgy 189, 1 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the China Postdoctoral Science Foundation (No. 2019M652799) and the National Natural Science Foundation of China (No. 51604309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, X., Zhou, Q. et al. Reduction of Red Mud Discharge by Reductive Bayer Digestion: A Comparative Study and Industrial Validation. JOM 72, 270–277 (2020). https://doi.org/10.1007/s11837-019-03874-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03874-1

Navigation