Skip to main content

Advertisement

Log in

Surface and Bulk Modification of Titanium Grade 2 Substrates for Enhanced Biological Activity

  • Advances in Surface Engineering
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The cellular response on the surface of equal-channel angular pressing (ECAP)-processed nanostructured titanium grade 2 substrates after plasma electrolytic oxidation (PEO) has been investigated. The results demonstrate that, after four passes of the ECAP process, the mechanical properties of the nanostructured sample were significantly enhanced compared with the coarse-grained sample. The results of x-ray diffractometry and energy-dispersive x-ray spectroscopy (EDS) showed that hydroxyapatite particles formed on the nanostructured Ti surface modified by PEO, indicating enhanced bioactivity. The growth rate and degree of cell attachment were notably increased, while the number of necrotic and apoptotic cells was negligible on the surface of the PEO-coated nanostructured titanium. This enhanced cell activity is related to the ultrafine grains with a distinct surface oxide layer having specific morphology and composition. As both the surface and bulk properties of the PEO-processed nanostructured titanium samples were improved, these samples could be excellent candidates for use as bone substitute materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Puleo and A. Nanci, Biomaterials 20, 2311 (1999).

    Article  Google Scholar 

  2. Z. Schwartz and B. Boyan, J. Cell. Biochem. 56, 340 (1994).

    Article  Google Scholar 

  3. S. Faghihi, F. Azari, J.A. Szpunar, H. Vali, and M. Tabrizian, J. Biomed. Mater. Res., Part A 91, 656 (2009).

    Article  Google Scholar 

  4. M. Dobzyniak, T.K. Fehring, and S. Odum, Clin. Orthop. Relat. Res. 447, 76 (2006).

    Article  Google Scholar 

  5. T. Niendorf, D. Canadinc, H. Maier, I. Karaman, and G. Yapici, Acta Biomater. 55, 6596 (2007).

    Google Scholar 

  6. F. Despang, A. Bernhardt, A. Lode, T. Hanke, D. Handtrack, B. Kieback, and M. Gelinsky, Acta Biomater. 6, 1006 (2010).

    Article  Google Scholar 

  7. F. Reshadi, G. Faraji, S. Aghdamifar, P. Yavari, and M. Mashhadi, Mater. Sci. Technol. 31, 1879 (2015).

    Article  Google Scholar 

  8. H. Sanati, F. Reshadi, G. Faraji, N. Soltani, and E. Zalnezhad, Proc. Inst. Mech. Eng. Part B 229, 953 (2015).

    Article  Google Scholar 

  9. G. Faraji and H. Kim, Mater. Sci. Technol. 33, 905 (2017).

    Article  Google Scholar 

  10. V. Segal, Mater. Sci. Eng., A 271, 322 (1999).

    Article  Google Scholar 

  11. R.O. Hynes and J.M. Bye, Cell 3, 113 (1974).

    Article  Google Scholar 

  12. L.B. Chen, A. Murray, R.A. Segal, A. Bushnell, and M.L. Walsh, Cell 14, 377 (1978).

    Article  Google Scholar 

  13. T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, and R. Bizios, Biomaterials 21, 1803 (2000).

    Article  Google Scholar 

  14. A.J. McManus, R.H. Doremus, R.W. Siegel, and R. Bizios, J. Biomed. Mater. Res. Part A 72, 98 (2005).

    Article  Google Scholar 

  15. S. Kay, A. Thapa, K.M. Haberstroh, and T.J. Webster, Tissue Eng. 8, 753 (2002).

    Article  Google Scholar 

  16. A. Yerokhin, A. Leyland, and A. Matthews, Appl. Surf. Sci. 200, 172 (2002).

    Article  Google Scholar 

  17. Y. Wang, T. Lei, B. Jiang, and L. Guo, Appl. Surf. Sci. 233, 258 (2004).

    Article  Google Scholar 

  18. Y. Li, I.-S. Lee, F.-Z. Cui, and S.-H. Choi, Biomaterials 29, 2025 (2008).

    Article  Google Scholar 

  19. F. Reshadi, G. Faraji, M. Baniassadi, and M. Tajeddini, Surf. Coat. Technol. 316, 113 (2017).

    Article  Google Scholar 

  20. F. Reshadi, S. Khorasani, and G. Faraji, Proc. Inst. Mech. Eng. Part J (2019). https://doi.org/10.1177/1350650119864246.

    Article  Google Scholar 

  21. L. Mishnaevsky Jr, E. Levashov, R.Z. Valiev, J. Segurado, I. Sabirov, N. Enikeev, S. Prokoshkin, A.V. Solov’yov, A. Korotitskiy, and E. Gutmanas, Mater. Sci. Eng., R 81, 1 (2014).

    Article  Google Scholar 

  22. G.I. Raab, R. Valiev, D. Gunderov, T.C. Lowe, A. Misra, and Y.T. Zhu, Mater. Sci. Forum 584, 80 (2008).

    Article  Google Scholar 

  23. I.P. Semenova, G.V. Klevtsov, N.Y.A. Klevtsova, G.S. Dyakonov, A.A. Matchin, and R.Z. Valiev, Adv. Eng. Mater. 18, 1216 (2016).

    Article  Google Scholar 

  24. G. Raab, E. Soshnikova, and R. Valiev, Mater. Sci. Eng. A 387, 674 (2004).

    Article  Google Scholar 

  25. V. Chuvil’deev, V. Kopylov, A. Bakhmet’ev, N. Sandler, A. Nokhrin, P. Tryaev, Y.G. Lopatin, N. Kozlova, A. Piskunov, and N. Melekhin, Dokl. Phys. 57, 10 (2012).

    Article  Google Scholar 

  26. B. Mingler, V. Stolyarov, M. Zehetbauer, W. Lacom, and H.P. Karnthaler, Mater. Sci. Forum 503, 805 (2006).

    Article  Google Scholar 

  27. S. Suwas, B. Beausir, L. Tóth, J.-J. Fundenberger, G. Gottstein, Acta Mater. 59, 1121 (2011).

    Article  Google Scholar 

  28. K. Hajizadeh, S.G. Alamdari, and B. Eghbali, Phys. B (Amsterdam, Neth.) 417, 33 (2013).

    Article  Google Scholar 

  29. Y. Chen, Y. Li, J. Walmsley, S. Dumoulin, S. Gireesh, S. Armada, P. Skaret, and H. Roven, Scr. Mater. 64, 904 (2011).

    Article  Google Scholar 

  30. D. Gunderov, A. Polyakov, I. Semenova, G. Raab, A. Churakova, E. Gimaltdinova, I. Sabirov, J. Segurado, V. Sitdikov, and I. Alexandrov, Mater. Sci. Eng. A 562, 128 (2013).

    Article  Google Scholar 

  31. X. Zhu, J. Chen, L. Scheideler, T. Altebaeumer, J. Geis-Gerstorfer, and D. Kern, Cells Tissues Organs 178, 13 (2004).

    Article  Google Scholar 

  32. X. Zhu, J. Chen, L. Scheideler, R. Reichl, and J. Geis-Gerstorfer, Biomaterials 25, 4087 (2004).

    Article  Google Scholar 

  33. G. Zhao, O. Zinger, Z. Schwartz, M. Wieland, D. Landolt, and B.D. Boyan, Clin. Oral Implants Res. 17, 258 (2006).

    Article  Google Scholar 

  34. K. Das, S. Bose, and A. Bandyopadhyay, Acta Biomater. 3, 573 (2007).

    Article  Google Scholar 

  35. S. Faghihi, F. Azari, A.P. Zhilyaev, J.A. Szpunar, H. Vali, and M. Tabrizian, Biomaterials 28, 3887 (2007).

    Article  Google Scholar 

  36. J.G. Steele, C. McFarland, B.A. Dalton, G. Johnson, M.D. Evans, C. Rolfe Howlett, and P.A. Underwood, J. Biomater. Sci. Polym. Ed. 5, 245 (1994).

    Article  Google Scholar 

  37. A.T. Rad, M. Novin, M. Solati-Hashjin, H. Vali, and S. Faghihi, Colloids Surf. B 103, 200 (2013).

    Article  Google Scholar 

  38. X.X. Wang, S. Hayakawa, K. Tsuru, and A. Osaka, J. Biomed. Mater. Res. 52, 171 (2000).

    Article  Google Scholar 

  39. T.J. Webster and J.U. Ejiofor, Biomaterials 25, 4731 (2004).

    Article  Google Scholar 

  40. G. Balasundaram and T.J. Webster, J. Mater. Chem. 16, 3737 (2006).

    Article  Google Scholar 

  41. N. Tran and T.J. Webster, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 1, 336 (2009).

    Google Scholar 

  42. A. Bandyopadhyay, F. Espana, V.K. Balla, S. Bose, Y. Ohgami, and N.M. Davies, Acta Biomater. 6, 1640 (2010).

    Article  Google Scholar 

  43. W. Xue, B.V. Krishna, A. Bandyopadhyay, and S. Bose, Acta Biomater. 3, 1007 (2007).

    Article  Google Scholar 

  44. Y. Han, S.-H. Hong, and K. Xu, Surf. Coat. Technol. 168, 249 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Iran National Science Foundation (INSF). Also, the authors are grateful for the support of the NBIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Faraji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reshadi, F., Faraji, G., Moghtaderi, H. et al. Surface and Bulk Modification of Titanium Grade 2 Substrates for Enhanced Biological Activity. JOM 72, 721–729 (2020). https://doi.org/10.1007/s11837-019-03866-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03866-1

Navigation