Skip to main content
Log in

Effects of CMC and Micelle Formation on the Removal of Sodium Benzoate or Sodium Stearate in a Sodium Aluminate Solution

  • Bauxite to Aluminum: Advances, Automation, and Alternative Processes
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Micelle formation over a critical micelle concentration (CMC) is related to the economic removal of organics in a sodium aluminate solution. In this research, removal of organics was investigated by adding activated alumina and red mud. The micelle formation of sodium benzoate and sodium stearate, together with enthalpy, Gibbs free energy and entropy, was discussed by detecting the surface tension. The removal rate of organics was > 21% with activated alumina or red mud in a concentrated sodium aluminate solution. Increasing benzoate (or stearate) concentration and elevating temperature decreased the surface tension. Furthermore, the concentrated sodium aluminate solution remarkably increased the cross-sectional headgroup area of sodium stearate compared with that of sodium benzoate and led to a strong depletion interaction and small organic assembly on the surface. The low CMC, large cross-sectional headgroup area and strong depletion interaction of micelles on the surface reduced the removal rate of organics in the sodium aluminate solution compared with that in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Power and J.S.C. Loh, Hydrometallurgy 105, 1 (2010).

    Article  Google Scholar 

  2. F. Busetti, L. Berwick, S. McDonald, A. Heitz, C.A. Joll, J. Loh, and G. Power, Ind. Eng. Chem. Res. 53, 6544 (2014).

    Article  Google Scholar 

  3. G. Power, J.S.C. Loh, and K. Niemelä, Hydrometallurgy 108, 149 (2011).

    Article  Google Scholar 

  4. G. Soucy, J.E. Larocque, and G. Forté, TMS Light Metals 1, 109 (2016).

    Google Scholar 

  5. R. Sonthalia, P. Behara, T. Kumaresan, and S. Thakre, Int. J. Miner. Process. 125, 137 (2013).

    Article  Google Scholar 

  6. I. Nikolić, D. Blečića, N. Blagojević, V. Radmilović, and K. Kovačevićc, Hydrometallurgy 74, 1 (2004).

    Article  Google Scholar 

  7. A.M. Paulaime, I. Seyssiecq, and S. Veesler, Powder Technol. 130, 345 (2003).

    Article  Google Scholar 

  8. T. Machold, D.W. Laird, C.C. Rowen, P.M. May, and G.T. Hefter, Hydrometallurgy 107, 68 (2011).

    Article  Google Scholar 

  9. S. Marciano, N. Mugnier, P. Clerin, B. Cristol, and P. Moulin, J. Membr. Sci. 281, 260 (2006).

    Article  Google Scholar 

  10. M. Wang, H.P. Hu, and J.W. Liu, Trans. Nonferr. Metals Soc. 27, 429 (2017).

    Article  Google Scholar 

  11. D.E. Smeulders, M.A. Wilson, H. Patney, and L. Armstrong, Ind. Eng. Chem. Res. 39, 3631 (2000).

    Article  Google Scholar 

  12. M. Mahmoudian, A. Ghaemi, and S. Shahhosseini, Hydrometallurgy 154, 137 (2015).

    Article  Google Scholar 

  13. A.V. Samokhin, N.V. Alekseev, Y.A. Lainer, and Y.V. Tsvetkov, Russ. J. Nonferr. Metals 51, 217 (2010).

    Article  Google Scholar 

  14. H.Y. Yu, X.L. Pan, T.T. Ding, W. Zhang, H. Liu, and S.W. Bi, Trans. Nonferr. Metals Soc. 21, 2323 (2011).

    Article  Google Scholar 

  15. W.C. Ying, J.J. Duffy, and M.E. Tucker, Environ. Prog. 7, 262 (1988).

    Article  Google Scholar 

  16. S.W. You, Y.F. Zhang, S.T. Cao, F.F. Chen, and Y. Zhang, Hydrometallurgy 115, 104 (2012).

    Article  Google Scholar 

  17. Q.Q. Mi, J.Q. Li, H.X. Jin, and X.H. Mao, Hydrometall. China 4, 266 (2013).

    Google Scholar 

  18. D.W. Laird, C.C. Rowen, T. Machold, P.M. May, and G. Hefter, Ind. Eng. Chem. Res. 52, 3613 (2013).

    Article  Google Scholar 

  19. J.P. Li, Z.L. Yin, B.L. Lv, and Q.Y. Chen, Trans. Nonferr. Metals Soc. 20, 1855 (2010).

    Google Scholar 

  20. S. Zhao, S.W. Bi, X.Q. Ding, and Z.F. Tong, Min. Process. Extr. Metall. 114, 53 (2013).

    Article  Google Scholar 

  21. G.H. Liu, G.Y. Wu, W. Chen, X.B. Li, Z.H. Peng, Q.S. Zhou, and T.G. Qi, Hydrometallurgy 176, 253 (2018).

    Article  Google Scholar 

  22. B.L. Lv, Q.Y. Chen, Z.L. Yin, and H.P. Hu, Trans. Nonferr. Metals Soc. 20, s37 (2010).

    Article  Google Scholar 

  23. H. Watling, Hydrometallurgy 55, 289 (2000).

    Article  Google Scholar 

  24. L. Hnedkovsky, P.M. May, and G. Hefter, J. Chem. Thermodyn. 109, 100 (2017).

    Article  Google Scholar 

  25. Ž. Živković, I. Mihajlović, I. Djurić, and N. Štrbac, Metall. Mater. Trans. B 41, 1116 (2010).

    Article  Google Scholar 

  26. R. Luo, D.R. Zhang, Z. Zeng, and R.L. Lytton, Constr. Build. Mater. 98, 900 (2015).

    Article  Google Scholar 

  27. X.B. Li, F. Niu, G.H. Liu, T.G. Qi, Q.S. Zhou, and Z.H. Peng, Trans. Nonferr. Metals Soc. 27, 908 (2017).

    Article  Google Scholar 

  28. E. Frotscher, J. Höring, G. Durand, C. Vargas, and S. Keller, Anal. Chem. 89, 3245 (2017).

    Article  Google Scholar 

  29. M.S. Akhter, Colloids Surf. A 121, 103 (1977).

    Article  Google Scholar 

  30. S.M. Alawi and M.S. Akhter, J. Mol. Liq. 160, 63 (2011).

    Article  Google Scholar 

  31. B.M. Folmer and K. Holmberg, Colloids Surf. A 180, 187 (2001).

    Article  Google Scholar 

  32. A.H. Roux, D. Hétu, G. Perron, and J.E. Desnoyers, J. Solution Chem. 13, 1 (1984).

    Article  Google Scholar 

  33. B. Jańczuk and A. Zdziennicka, J. Mol. Liq. 286, 1 (2019).

    Article  Google Scholar 

  34. M.A. Khairul, J. Zanganeh, and B. Moghtaderi, Conserv. Recycl. 141, 483 (2019).

    Article  Google Scholar 

  35. G. Power, J.S.C. Loh, and C. Vernon, Hydrometallurgy 127, 125 (2012).

    Article  Google Scholar 

  36. R.K. Xu, Y.F. Hu, J.J. Dynes, A.Z. Zhao, R.I.R. Blyth, L.M. Kozaka, and P.M. Huang, Geochim. Cosmochim. Acta 74, 6422 (2010).

    Article  Google Scholar 

  37. X.B. Li, L. Yan, D.F. Zhao, Q.S. Zhou, G.H. Liu, Z.H. Peng, S.S. Yang, and T.G. Qi, Trans. Nonferr. Metals Soc. 23, 1472 (2013).

    Article  Google Scholar 

  38. P. Palladino and R. Ragone, Langmuir 27, 14065 (2011).

    Article  Google Scholar 

  39. Y.J. Wang, Y.C. Zhai, Y.W. Tian, Y.X. Han, and L.L. Liu, Chin. J. Process Eng. 3, 121 (2003).

    Google Scholar 

  40. P. Kanokkarn, T. Shiina, M. Santikunaporn, and S. Chavadej, Colloids Surf. A 524, 135 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (No. 51874366).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guihua Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 448 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, P., Liu, G., Li, X. et al. Effects of CMC and Micelle Formation on the Removal of Sodium Benzoate or Sodium Stearate in a Sodium Aluminate Solution. JOM 72, 263–269 (2020). https://doi.org/10.1007/s11837-019-03853-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03853-6

Navigation