Skip to main content
Log in

Advanced Postirradiation Characterization of Nuclear Fuels Using Pulsed Neutrons

  • Advanced Characterization and Testing of Irradiated Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Methods for postirradiation characterization of bulk (cm3) irradiated materials or even spent nuclear fuels are sparse due to their extremely radioactive nature. While several methods exist to characterize smaller volumes (< 1 mm3) of such samples, selecting these volumes from larger samples is challenging. X-ray-based methods are prohibitive due to the strong γ-radiation from the sample flooding the detectors. Neutron-based methods available in the proximity of irradiation reactors allow for thermal neutron radiography or computed tomography using a small reactor source, but one cannot assess isotope distributions or microstructural features such as phases, texture, or strain from diffraction measurements due to flux limitations. We present herein a pathway to provide pulsed neutron characterization of bulk irradiated samples using time-of-flight neutron diffraction for microstructural characterization and energy-resolved neutron imaging for assessment of isotopic densities and distributions. Ultimately, laser-driven pulsed neutron sources may allow deployment of these techniques pool-side at irradiation reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.C. Birtcher, J.W. Richardson, and M.H. Mueller, J. Nucl. Mater. 230, 158 (1996).

    Google Scholar 

  2. J.W. Richardson Jr, R.C. Birtcher, and S.K. Chan, Phys. B: Cond. Matter. 241, 390 (1997).

    Google Scholar 

  3. R.C. Birtcher, J.W. Richardson Jr, and M.H. Mueller, J. Nucl. Mater. 244, 251 (1997).

    Google Scholar 

  4. E.H. Lehmann, P. Vontobel, and L. Wiezel, Nondestr. Test. Eval. 16, 203 (2001).

    Google Scholar 

  5. E.H. Lehmann, P. Vontobel, and A. Hermann, NIMA 515, 745 (2003).

    Google Scholar 

  6. P. Vontobel, M. Tamaki, N. Mori, T. Ashida, L. Zanini, E.H. Lehmann, and M. Jaggi, J. Nucl. Mater. 356, 162 (2006).

    Google Scholar 

  7. D. Sears, N. Wang, R. Rogge, I. Swainson, and R. Donaberger, CNBC report CNBC-2011-MS-5 (2011).

  8. J. Carmack and F. Goldner, J. Nucl. Mater. 448, 373 (2014).

    Google Scholar 

  9. K.E. Barrett, K.D. Ellis, C.R. Glass, G.A. Roth, M.P. Teague, and J. Johns, Nucl. Eng. Des. 294, 38 (2015).

    Google Scholar 

  10. F. Cappia, J.M. Harp, and K. McCoy, J. Nucl. Mater. 517, 97 (2019).

    Google Scholar 

  11. F. Cappia and J.M. Harp, J. Nucl. Mater. 518, 62 (2019).

    Google Scholar 

  12. J.M. Harp, S.L. Hayes, P.G. Medvedev, D.L. Porter, and L. Capriotti, Idaho Natl. Lab. Rep. INL/EXT-17-41677 (2017).

  13. P. Medvedev, S. Hayes, S. Bays, S. Novascone, and L. Capriotti, Nucl. Eng. Des. 328, 154 (2018).

    Google Scholar 

  14. J.M. Harp, H.J.M. Chichester, and L. Capriotti, Idaho Natl. Lab. Rep. INL/LTD-16-40088 (2016).

  15. J.M. Harp, L. Capriotti, H.J.M. Chichester, P.G. Medvedev, D.L. Porter, and S.L. Hayes, J. Nucl. Mater. 509, 454 (2018).

    Google Scholar 

  16. J.M. Harp, H.J.M. Chichester, and L. Capriotti, J. Nucl. Mater. 509, 377 (2018).

    Google Scholar 

  17. A.S. Tremsin, S.C. Vogel, M. Mocko, M.A. Bourke, V. Yuan, R.O. Nelson, D.W. Brown, and W.B. Feller, J. Nucl. Mater. 440, 633 (2013).

    Google Scholar 

  18. M.A. Bourke, S.C. Vogel, S.L. Voit, K.J. McClellan, A.S. Losko, and A.S. Tremsin, Los Alamos National Laboratory report LA-UR-16-22179 (2016).

  19. S.C. Vogel, N.P. Borges, A.S. Losko, S.M. Mosby, S.L. Voit, J.T. White, D.D. Byler, J.T. Dunwoody, A.T. Nelson, and K.J. McClellan, Los Alamos National Laboratory report LA-UR-17-28837 (2017).

  20. S. Irukuvarghula, B. Blamer, S. Ahn, S.C. Vogel, A.S. Losko, and S.M. McDeavitt, J. Nucl. Mater. 497, 10 (2017).

    Google Scholar 

  21. S. Takajo, K.J. Hollis, D.R. Cummins, E.L. Tegtmeier, D.E. Dombrowski, and S.C. Vogel, Quantum Beam Sci. 2, 12 (2018).

    Google Scholar 

  22. K.J. Hollis, D.R. Cummins, S.C. Vogel, and D.E. Dombrowski, J. Therm. Spray Technol. 28, 314 (2019).

    Google Scholar 

  23. S.C. Vogel, D.D. Byler, E. Kardoulaki, A.S. Losko, K.J. Mcclellan, A.S. Tremsin, A.D.R. Andersson, and J.T. White, Los Alamos National Laboratory report LA-UR-18-24874 (2018).

  24. C.L. Morris, M.A.M. Bourke, D.D. Byler, C.F. Chen, G. Hogan, J.F. Hunter, K. Kwiatkowski, F.G. Mariam, K.J. McClellan, F. Merrill, and D.J. Morley, Rev. Sci. Instrum. 84, 023902 (2013).

    Google Scholar 

  25. R. Pokharel, D.W. Brown, B. Clausen, D.D. Byler, T.L. Ickes, K.J. McClellan, R.M. Suter, and P. Kenesei, Microsc. Today 25, 42 (2017).

    Google Scholar 

  26. P.W. Lisowski and K.F. Schoenberg, NIMA 562, 910 (2006).

    Google Scholar 

  27. M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, M. Devlin, A. Favalli, J.C. Fernandez, C.D. Gautier, M. Geissel, and R. Haight, Phys. Rev. Lett. 110, 044802 (2013).

    Google Scholar 

  28. J.C. Fernández, D.C. Gautier, C. Huang, S. Palaniyappan, B.J. Albright, W. Bang, G. Dyer, A. Favalli, J.F. Hunter, J. Mendez, and M. Roth, Phys. Plasm. 24, 056702 (2017).

    Google Scholar 

  29. M. Roth, S.C. Vogel, M.A.M. Bourke, J.C. Fernandez, M.J. Mocko, S. Glenzer, W. Leemans, C. Siders, and C. Haefner, Los Alamos National Laboratory report LA-UR-17-23190 (2017).

  30. U. Rücker, T. Cronert, J. Voigt, J.P. Dabruck, P.E. Doege, J. Ulrich, R. Nabbi, Y. Beßler, M. Butzek, M. Büscher, and C. Lange, Eur. Phys. J. Plus 131, 19 (2016).

    Google Scholar 

  31. Post Irradiation Examination Guide, Idaho National Laboratory report INL/MIS-15-35828 (2015).

  32. J.M. Harp, L. Capriotti, and H.J.M. Chichester, J. Nucl. Mater. 515, 420 (2019).

    Google Scholar 

  33. M. Teague, B. Gorman, J. King, D. Porter, and S. Hayes, J. Nucl. Mater. 441, 267 (2013).

    Google Scholar 

  34. D.L. Porter and H. Tsai, J. Nucl. Mater. 427, 46 (2012).

    Google Scholar 

  35. M.K. Meyer, J. Gan, J.F. Jue, D.D. Eeiser, E. Perez, A. Robinson, D.M. Wachs, N. Woolstenhulme, G.L. Hofman, and Y.S. Kim, Nucl. Eng. Technol. 46, 169 (2014).

    Google Scholar 

  36. D.M. Wachs, A.B. Robinson, F.J. Rice, N.C. Kraft, S.C. Taylor, M. Lillo, N. Woolstenhulme, and G.A. Roth, J. Nucl. Mater. 476, 270 (2016).

    Google Scholar 

  37. W.J. Williams, A.B. Robinson, and B.H. Rabin, JOM 2546 (2017).

    Google Scholar 

  38. F. Rice, W. Williams, A. Robinson, J. Harp, M. Meyer, and B. Rabin, Idaho National Laboratory report INL/EXT-14-33066 (2015).

  39. A.E. Craft, W.J. Williams, M.I.K. Abir, and D.M. Wachs, Idaho National Laboratory report INL/EXT-13-30741 (2013).

  40. A.E. Craft, D.M. Wachs, M.A. Okuniewski, D.L. Chichester, W.J. Williams, G.C. Papaioannou, and A.T. Smolinski, Phys. Proc. 69, 483 (2015).

    Google Scholar 

  41. A.E. Craft, G.C. Papaioannou, D.L. Chichester, and W.J. Williams, Phys. Procedia 88, 81 (2017).

    Google Scholar 

  42. A.E. Craft, and B. Schillinger, WCNR-11 in Materials Research Proceedings. Submitted for publication (2019).

  43. A.E. Craft, C. Grünzweig, M. Morgano, and E. Lehmann, WCNR-11 in Materials Research Proceedings. Submitted for publication (2019).

  44. DOE Standard “Preparation of Nonreactor Nuclear Facility Documented Safety Analysis”, DOE-STD-3009-2014, November 2014.

  45. Accelerator Facility Safety Implementation Guide for DOE O 420.2C, Safety of Accelerator Facilities, US Department of Energy, Office of Science, DOE G 420.2-1A, August 1, 2014.

  46. H.R. Wenk, L. Lutterotti, and S. Vogel, NIMA 515, 575 (2003).

    Google Scholar 

  47. S.C. Vogel, C. Hartig, L. Lutterotti, R.B. Von Dreele, H.R. Wenk, and D.J. Williams, Powd. Diffr. 19, 65 (2004).

    Google Scholar 

  48. S. Takajo and S.C. Vogel, J. Appl. Cryst. 51, 895 (2018).

    Google Scholar 

  49. A.S. Losko, S.C. Vogel, H.M. Reiche, and H. Nakotte, J. Appl. Cryst. 47, 2109 (2014).

    Google Scholar 

  50. M. Mocko, G. Muhrer, and F. Tovesson, NIMA 589, 455 (2008).

    Google Scholar 

  51. M. Mocko and G. Muhrer, NIMA 704, 27 (2013).

    Google Scholar 

  52. A.S. Tremsin, J.B. McPhate, J.V. Vallerga, O.H. Siegmund, W.B. Feller, E. Lehmann, and M. Dawson, NIMA 628, 415 (2011).

    Google Scholar 

  53. A.S. Tremsin, J.B. McPhate, J.V. Vallerga, O.H. Siegmund, W.B. Feller, E. Lehmann, L.G. Butler, and M. Dawson, NIMA 652, 400 (2011).

    Google Scholar 

  54. A.S. Tremsin, W. Kockelmann, D.W. Pooley, and W.B. Feller, NIMA 803, 15 (2015).

    Google Scholar 

  55. N.M. Larson, Updated Users’ Guide for SAMMY Multilevel R-matrix Fits to Neutron Data Using Bayes’ Equation (Oak Ridge: Oak Ridge National Laboratory, 1998).

    Google Scholar 

  56. M.C. Moxon, T.C. Ware, and C.J. Dean, REFIT-2009 A Least-Square Fitting Program for Resonance Analysis of Neutron Transmission. Capture, Fission and Scattering Data Users’ Guide for REFIT-2009-10 (UKNSFP243, 2010).

  57. C. Messaoudil, T. Boudier, C.O. Sorzano, and S. Marco, BMC Bioinform. 8, 288 (2007).

    Google Scholar 

  58. A.S. Tremsin, A.E. Craft, M.A. Bourke, A.T. Smolinski, G.C. Papaioannou, M.A. Ruddell, J. Littell, and J. Tedesco, NIMA 902, 110 (2018).

    Google Scholar 

  59. A.S. Tremsin, A.E. Craft, G.C. Papaioannou, A.T. Smolinski, N.M. Boulton, M.A. Ruddell, B.J. Littell, and K.D. Riley, NIMA 927, 109 (2019).

    Google Scholar 

  60. S.H. Giegel, C.L. Pope, and A.E. Craft, NIMB 454, 28 (2019).

    Google Scholar 

  61. L. Yin, B.J. Albright, B.M. Hegelich, K.J. Bowers, K.A. Flippo, T.J. Kwan, and J.C. Fernández, Phys. Plasm. 14, 056706 (2007).

    Google Scholar 

  62. T.P. Wangler, Los Alamos Scientific Laboratory report LA-8388, TRN: 81-001972 (1980).

  63. S.C. Vogel, M. Roth, J.C. Fernandez, D.C. Gautier, and K.F. Schoenberg, Neutron News 29, 32 (2018).

    Google Scholar 

  64. A.S. Tremsin, A.S. Losko, S.C. Vogel, D.D. Byler, K.J. McClellan, M.A. Bourke, and J.V. Vallerga, AIP Adv. 7, 015315 (2017).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the DOE/NE Fuel Cycle R&D research program. This work has benefitted from the use of the Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of the S Department of Energy under Contract No. 89233218NCA000001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven C. Vogel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogel, S.C., Bourke, M.A.M., Craft, A.E. et al. Advanced Postirradiation Characterization of Nuclear Fuels Using Pulsed Neutrons. JOM 72, 187–196 (2020). https://doi.org/10.1007/s11837-019-03849-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03849-2

Navigation