Skip to main content
Log in

End-of-Life Lithium-Ion Battery Component Mechanical Liberation and Separation

  • Extraction and Recycling of Battery Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Effective mechanical treatment of end-of-life lithium-ion batteries (LIBs) to recover a high yield of enriched active electrode materials (i.e., lithium metal oxide and graphite) is key to achieving a robust LIB recycling process. In this study, shredding and sieving were performed on LIB packs of three cell types (prismatic, cylindrical, and pouch cells) to investigate the separation and liberation of LIB components. The results demonstrated that a significant portion of lithium metal oxide remained unliberated from the aluminum foil after shredding. Of the physical liberation methods investigated, it was shown that attrition milling of shredded LIB packs effectively separated LIB components, and enriched active materials, metal foils and low-value components into < 500 μm, 500 μm to 2 mm, and > 2 mm fractions, respectively. A combination of shredding, sieving, and attrition milling was demonstrated to be a promising mechanical/physical method for liberation and beneficiation of LIB components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Curry, Lithium-Ion Battery Costs and Market (2017). https://data.bloomberglp.com/bnef/sites/14/2017/07/BNEF-Lithium-ion-batterycosts-and-market.pdf. Accessed 18 August 2019.

  2. C. Helbig, A.M. Bradshaw, L. Wietschel, A. Thorenz, and A. Tuma, J. Clean. Prod. 172, 274 (2018).

    Article  Google Scholar 

  3. B. Moradi and G.G. Botte, J. Appl. Electrochem. 46, 123 (2016).

    Article  Google Scholar 

  4. D.H.P. Kang, M. Chen, and O.A. Ogunseitan, Environ. Sci. Technol. 47, 5495 (2013).

    Article  Google Scholar 

  5. X. Zeng, J. Li, and N. Singh, Crit. Rev. Environ. Sci. Technol. 44, 1129 (2014).

    Article  Google Scholar 

  6. F. Larsson, P. Andersson, P. Blomqvist, and B.E. Mellander, Sci. Rep. 7, 1 (2017).

    Article  Google Scholar 

  7. D.A. Notter, M. Gauch, R. Widmer, P. Wager, A. Stamp, R. Zah, and H.-J. Althaus, Environ. Sci. Technol. 44, 6550 (2010).

    Article  Google Scholar 

  8. J. Dewulf, G. Van der Vorst, K. Denturck, H. Van Langenhove, W. Ghyoot, J. Tytgat, and K. Vandeputte, Resour. Conserv. Recycl. 54, 229 (2010).

    Article  Google Scholar 

  9. J. Heelan, E. Gratz, Z. Zheng, Q. Wang, M. Chen, D. Apelian, and Y. Wang, JOM 68, 2632 (2016).

    Article  Google Scholar 

  10. F. Gu, J. Guo, X. Yao, P.A. Summers, S.D. Widijatmoko, and P. Hall, J. Clean. Prod. 161, 765 (2017).

    Article  Google Scholar 

  11. D. Cheret and S. Santen, U.S. Patent No. 7,169,206 (2007).

  12. F. Saloojee and J. Lloyd, Lithium Battery Recycling Process. Department of Environmental Affairs Development Bank of South Africa (Project No. DB-074 (RW1/1016)) (2015).

  13. T. Georgi-Maschler, B. Friedrich, R. Weyhe, H. Heegn, and M. Rutz, J. Power Sources 207, 173 (2012).

    Article  Google Scholar 

  14. B. Yazicioglu and J. Tytgat, DG Environment–Stakeholder Meeting, (Umicore, 2011). https://ec.europa.eu/environment/waste/batteries/pdf/umicore_pres_18072011.pdf. Accessed 12 Mar 2018.

  15. A. Sonoc, J. Jeswiet, and V.K. Soo, Proc. CIRP 29, 752 (2015).

    Article  Google Scholar 

  16. T. Zhang, Y. He, F. Wang, L. Ge, X. Zhu, and H. Li, Waste Manag 34, 1051 (2014).

    Article  Google Scholar 

  17. J. Diekmann, C. Hanisch, L. Froböse, G. Schälicke, T. Loellhoeffel, A.-S. Fölster, and A. Kwade, J. Electrochem. Soc. 164, A6184 (2016).

    Article  Google Scholar 

  18. F. Pagnanelli, E. Moscardini, P. Altimari, T. Abo Atia, and L. Toro, Waste Manag 60, 706 (2017).

    Article  Google Scholar 

  19. S.M. Shin, N.H. Kim, J.S. Sohn, D.H. Yang, and Y.H. Kim, Hydrometallurgy 79, 172 (2005).

    Article  Google Scholar 

  20. X. Wang, G. Gaustad, and C.W. Babbitt, Waste Manag 51, 204 (2016).

    Article  Google Scholar 

  21. L. Wuschke, H. Jäckel, T. Leißner, and U.A. Peuker, Waste Manag 85, 317 (2019).

    Article  Google Scholar 

  22. T. Boundy, M. Boyton, and P. Taylor, J. Clean. Prod. 154, 436 (2017).

    Article  Google Scholar 

  23. J. Li, P. Shi, Z. Wang, Y. Chen, and C.C. Chang, Chemosphere 77, 1132 (2009).

    Article  Google Scholar 

  24. L. Li, L. Zhai, X. Zhang, J. Lu, R. Chen, F. Wu, and K. Amine, J. Power Sources 262, 380 (2014).

    Article  Google Scholar 

  25. L.P. He, S.Y. Sun, X.F. Song, and J.G. Yu, Waste Manag 46, 523 (2015).

    Article  Google Scholar 

  26. C.G. Barlowz, Electrochem. Solid-State Lett. 2, 362 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ruben Ochoa for assistance with equipment fabrication, mechanical experiments, and material analysis related to this work. The University of Utah Waste Management Center provided batteries for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to York R. Smith.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 753 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinegar, H., Smith, Y.R. End-of-Life Lithium-Ion Battery Component Mechanical Liberation and Separation. JOM 71, 4447–4456 (2019). https://doi.org/10.1007/s11837-019-03828-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03828-7

Navigation