Skip to main content
Log in

Electrospun Polyethylene Oxide-Based Membranes Incorporated with Silicon Dioxide, Aluminum Oxide and Clay Nanoparticles as Flexible Solvent-Free Electrolytes for Lithium-Ion Batteries

  • Functional Nanomaterials for Energy Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, thin electrospun solvent-free electrolytes based on polyethylene oxide (PEO) incorporated with silicon dioxide (SiO2), aluminum oxide (Al2O3) and clay nanoparticles were prepared and characterized. Lithium perchlorate and ethylene carbonate were used as salt and plasticizer, respectively. The morphological properties were investigated using scanning electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy and x-ray diffraction patterns. The obtained results confirmed an increment of the fraction of free ions and amorphous regions by incorporation of the fillers into the electrospun electrolytes. Introduction of the fillers into the PEO matrix significantly improved the ion conductivity. The highest ion conductivities of 0.033 mS cm−1, 0.059 mS cm−1 and 0.016 mS cm−1 were obtained by the addition of SiO2, Al2O3 and clay nanoparticles into the as-spun electrolytes, respectively. The electrospun electrolytes showed superior ion conductivities compared with polymeric electrolytes synthesized through a standard solution-casting method. In addition, the activation energy decreased with the addition of fillers into the electrospun fibres. The as-spun electrolytes displayed low cycling durability. Furthermore, tensile properties implied that tensile strength could be improved by loading an optimum ratio of the fillers. This investigation presents the great potential of electrospun membranes as electrolytes applicable for solid-state lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.W. Fergus, J. Power Sources 195, 4554 (2010).

    Article  Google Scholar 

  2. W.H. Meyer, J. Adv. Mater. 10, 439 (1998).

    Article  Google Scholar 

  3. R. Agrawal and G. Pandey, J. Phys. D 41, 223001 (2008).

    Article  Google Scholar 

  4. M.Z.A. Munshi, Solid polymer electrolytes, ed: Google Patents, 2003.

  5. J.-M. Tarascon and M. Armand, Nature 414, 359 (2001).

    Article  Google Scholar 

  6. J. Song, Y. Wang, and C.C. Wan, J. Power Sources 77, 183 (1999).

    Article  Google Scholar 

  7. Z. Xue, D. He, and X. Xie, J. Mater. Chem. A 3, 19218 (2015).

    Article  Google Scholar 

  8. R. M. Formato, R. F. Kovar, P. Osenar, N. Landrau, and L. S. Rubin, Composite solid polymer electrolyte membranes, ed: Google Patents, 2001.

  9. M. Armand, Solid State Ionics 9, 745 (1983).

    Article  Google Scholar 

  10. Z. Gadjourova, Y.G. Andreev, D.P. Tunstall, and P.G. Bruce, Nature 412, 520 (2001).

    Article  Google Scholar 

  11. S. Chung, K. Such, W. Wieczorek, and J. Stevens, J. Polym. Sci. B 32, 2733 (1994).

    Article  Google Scholar 

  12. M.A. Ratner and D.F. Shriver, Chem. Rev. 88, 109 (1988).

    Article  Google Scholar 

  13. M. Jacob, S. Prabaharan, and S. Radhakrishna, Solid State Ionics 104, 267 (1997).

    Article  Google Scholar 

  14. A.M. Stephan and K. Nahm, Polym. J. 47, 5952 (2006).

    Article  Google Scholar 

  15. W. Liu, N. Liu, J. Sun, P.-C. Hsu, Y. Li, and H.-W. Lee, et al., Nano Lett. 15, 2740 (2015).

    Article  Google Scholar 

  16. F. Yuan, H.-Z. Chen, H.-Y. Yang, H.-Y. Li, and M. Wang, Mater. Chem. Phys. 89, 390 (2005).

    Article  Google Scholar 

  17. S.S. Zhang, J. Power Sources 162, 1379 (2006).

    Article  Google Scholar 

  18. W. Wieczorek, Z. Florjanczyk, and J. Stevens, Electrochim. Acta 40, 2251 (1995).

    Article  Google Scholar 

  19. E.M. Masoud, Polym. Test. 56, 65 (2016).

    Article  Google Scholar 

  20. E.M. Masoud, A.-A. El-Bellihi, W.A. Bayoumy, and E.A. Mohamed, J. Mol. Liq. 260, 237 (2018).

    Article  Google Scholar 

  21. E.M. Masoud, M.E. Hassan, S.E. Wahdaan, S.R. Elsayed, and S.A. Elsayed, Polym. Test. 56, 277 (2016).

    Article  Google Scholar 

  22. K. Wimalaweera, V. Seneviratne, and M. Dissanayake, Procedia Eng. 215, 109 (2017).

    Article  Google Scholar 

  23. N. Byrne, J. Efthimiadis, D. MacFarlane, and M. Forsyth, J. Mater. Chem. 14, 127 (2004).

    Article  Google Scholar 

  24. Y. Yap, A. You, L. Teo, and H. Hanapei, Int. J. Electrochem. Sci. 8, 2154 (2013).

    Google Scholar 

  25. L. Fan, C.-W. Nan, and S. Zhao, Solid State Ionics 164, 81 (2003).

    Article  Google Scholar 

  26. Y. Ma, L. Li, G. Gao, X. Yang, and Y. You, Electrochim. Acta 187, 535 (2016).

    Article  Google Scholar 

  27. C. Tang, K. Hackenberg, Q. Fu, P.M. Ajayan, and H. Ardebili, Nano Lett. 12, 1152 (2012).

    Article  Google Scholar 

  28. H.W. Chen, C.Y. Chiu, and F.C. Chang, J. Polym. Sci. B 40, 1342 (2002).

    Article  Google Scholar 

  29. E.M. Masoud, Ionics 25, 2645 (2019).

    Article  Google Scholar 

  30. S.N. Banitaba, D. Semnani, B. Rezaei, and A.A. Ensafi, Polym. Int. 68, 746 (2019).

    Article  Google Scholar 

  31. K. Freitag, P. Walke, T. Nilges, H. Kirchhain, R. Spranger, and L. van Wüllen, J. Power Sources 378, 610 (2018).

    Article  Google Scholar 

  32. K.M. Freitag, H. Kirchhain, L.V. Wüllen, and T. Nilges, Inorg. Chem. 56, 2100 (2017).

    Article  Google Scholar 

  33. S. N. Banitaba, D. Semnani, E. Heydari-Soureshjani, B. Rezaei, and A. A. Ensafi, Mater. Res. Express, (2019)

  34. S. N. Banitaba, D. Semnani, B. Rezaei, and A. A. Ensafi, Polym. Adv. Technol., (2019).

  35. D. Hambali, Z. Zainuddin, I. SUPA, and Z. Osman, Sains Malays. 45, 1697 (2016).

  36. M.R. Johan, O.H. Shy, S. Ibrahim, S.M.M. Yassin, and T.Y. Hui, Solid State Ionics 196, 41 (2011).

    Article  Google Scholar 

  37. A. León, P. Reuquen, C. Garín, R. Segura, P. Vargas, and P. Zapata, et al., J. Appl. Sci. 7, 49 (2017).

    Article  Google Scholar 

  38. C. Drew, X. Wang, L.A. Samuelson, and J. Kumar, J. Macromol. Sci. A 40, 1415 (2003).

    Article  Google Scholar 

  39. A. Arya and A. Sharma, J. Phys. D 50, 443002 (2017).

    Article  Google Scholar 

  40. C. Bhatt, R. Swaroop, A. Arya, and A. Sharma, J. Mater. Sci. Eng. B 5, 418 (2015).

    Google Scholar 

  41. J.O. Kweon and S.T. Noh, J. Appl. Polym. Sci. 81, 2471 (2001).

    Article  Google Scholar 

  42. W. Liu, Multilayer Composite Solid Electrolytes for Lithium Ion Batteries, Dissertations (2016).

  43. H.R. Pant, M.P. Bajgai, K.T. Nam, Y.A. Seo, D.R. Pandeya, and S.T. Hong, et al., J. Hazard. Mater. 185, 124 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Semnani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 671 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banitaba, S.N., Semnani, D., Heydari-Soureshjani, E. et al. Electrospun Polyethylene Oxide-Based Membranes Incorporated with Silicon Dioxide, Aluminum Oxide and Clay Nanoparticles as Flexible Solvent-Free Electrolytes for Lithium-Ion Batteries. JOM 71, 4537–4546 (2019). https://doi.org/10.1007/s11837-019-03810-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03810-3

Navigation