Advertisement

JOM

, Volume 72, Issue 1, pp 28–38 | Cite as

Microstructure-Sensitive Computational Estimates of Driving Forces for Surface Versus Subsurface Fatigue Crack Formation in Duplex Ti-6Al-4V and Al 7075-T6

  • Krzysztof S. StopkaEmail author
  • David L. McDowell
3D Materials Science

Abstract

Statistical realizations of three-dimensional digital microstructures with different crystallographic orientation distributions, grain shapes, and grain size distributions are subjected to uniaxial cyclic straining to compare the cases of bulk and free surface on driving forces for fatigue crack formation. Crystal plasticity finite element simulations are conducted using both fully periodic (more representative of the bulk) and traction-free (i.e., free surface) boundary conditions for duplex Ti-6Al-4V and rolled Al 7075-T6. Following elastic–plastic shakedown, mesoscale volume-averaged fatigue indicator parameters (FIPs) are computed within fatigue damage process zones of grains and are fit to known extreme value distributions (EVDs). Owing to differences in crystallographic slip symmetry, FIPs for fcc Al 7075-T6 statistically occur much closer to the traction-free surface than for hcp Ti-6Al-4V. Additionally, surface versus bulk EVDs of FIPs vary differently for the two material systems, indicating a coupled role of microstructure and surface proximity that had not been previously elucidated.

Notes

Acknowledgements

This work was sponsored by the Office of Naval Research (ONR) under Grant Number N00014-17-1-2036. The views and conclusions contained herein are those of the authors only and should not be interpreted as representing those of ONR, the US Navy, or the US Government.

Supplementary material

11837_2019_3804_MOESM1_ESM.pdf (408 kb)
Supplementary material 1 (PDF 407 kb)

References

  1. 1.
    I. Marines, X. Bin, and C. Bathias, Int. J. Fatigue 25, 1101 (2003).CrossRefGoogle Scholar
  2. 2.
    K.S. Ravi Chandran and S.K. Jha, Acta Mater. 53, 1867 (2005).CrossRefGoogle Scholar
  3. 3.
    C.P. Przybyla and D.L. McDowell, Acta Mater. 60, 293 (2012).CrossRefGoogle Scholar
  4. 4.
    P.S. De, R.S. Mishra, and C.B. Smith, Scr. Mater. 60, 500 (2009).CrossRefGoogle Scholar
  5. 5.
    M.A. Groeber and M.A. Jackson, Integr. Mater. Manuf. Innov. 3, 1 (2014).CrossRefGoogle Scholar
  6. 6.
    D.L. McDowell, Int. J. Damage Mech 8, 376 (1999).CrossRefGoogle Scholar
  7. 7.
    T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Int. J. Solids Struct. 40, 3647 (2003).CrossRefGoogle Scholar
  8. 8.
    D.L. McDowell and F.P.E. Dunne, Int. J. Fatigue 32, 1521 (2010).CrossRefGoogle Scholar
  9. 9.
    B.D. Smith, D.S. Shih, and D.L. McDowell, Int. J. Fatigue 92, 116 (2016).CrossRefGoogle Scholar
  10. 10.
    B.D. Smith, D.S. Shih, and D.L. McDowell, Int. J. Plast 101, 1 (2018).CrossRefGoogle Scholar
  11. 11.
    M. Peters, A. Gysler, and G. Lütjering, Metall. Mater. Trans. A 15, 1597 (1984).CrossRefGoogle Scholar
  12. 12.
    G. Lütjering, Mater. Sci. Eng., A 243, 32 (1998).CrossRefGoogle Scholar
  13. 13.
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., ed. F.J. Humphreys and M. Hatherly (Oxford: Elsevier, 2004), pp. 215–217.CrossRefGoogle Scholar
  14. 14.
    P. Ramesh Narayanan, S. Suwas, K. Sreekumar, P.P. Sinha, and S. Ranganathan, Mater. Sci. Forum 702–703, 315 (2012).Google Scholar
  15. 15.
    T. Zhao and Y. Jiang, Int. J. Fatigue 30, 834 (2008).CrossRefGoogle Scholar
  16. 16.
    C. Hennessey, G.M. Castelluccio, and D.L. McDowell, Mater. Sci. Eng., A 687, 241 (2017).CrossRefGoogle Scholar
  17. 17.
    J.R. Mayeur and D.L. McDowell, Int. J. Plast 23, 1457 (2007).CrossRefGoogle Scholar
  18. 18.
    M. Zhang, J. Zhang, and D.L. McDowell, Int. J. Plast 23, 1328 (2007).CrossRefGoogle Scholar
  19. 19.
    Simulia, ABAQUS (Providence, RI: Dassault Systemes, 2007).Google Scholar
  20. 20.
    C.P. Przybyla, W.D. Musinski, G.M. Castelluccio, and D.L. McDowell, Int. J. Fatigue 57, 9 (2013).CrossRefGoogle Scholar
  21. 21.
    D.L. McDowell, Mater. Sci. Eng., A 468–470, 4 (2007).CrossRefGoogle Scholar
  22. 22.
    A. Fatemi and D.F. Socie, Fatigue Fract. Eng. Mater. Struct. 11, 149 (1988).CrossRefGoogle Scholar
  23. 23.
    D.L. McDowell and J.-Y. Berard, Fatigue Fract. Eng. Mater. Struct. 15, 719 (1992).CrossRefGoogle Scholar
  24. 24.
    B. Chen, J. Jiang, and F.P.E. Dunne, Int. J. Plast 101, 213 (2018).CrossRefGoogle Scholar
  25. 25.
    G.M. Castelluccio and D.L. McDowell, Int. J. Fract. 176, 49 (2012).CrossRefGoogle Scholar
  26. 26.
    C.D. Hennessey, Masters Thesis (George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 2015).Google Scholar
  27. 27.
    G.M. Castelluccio and D.L. McDowell, Mater. Sci. Eng., A 639, 626 (2015).CrossRefGoogle Scholar
  28. 28.
    G.M. Castelluccio and D.L. McDowell, Mater. Sci. Eng., A 598, 34 (2014).CrossRefGoogle Scholar
  29. 29.
    I. Bantounas, D. Dye, and T.C. Lindley, Acta Mater. 57, 3584 (2009).CrossRefGoogle Scholar
  30. 30.
    F. Bridier, P. Villechaise, and J. Mendez, Acta Mater. 56, 3951 (2008).CrossRefGoogle Scholar
  31. 31.
    E.J. Gumbel, Statistics of Extremes (New York: Dover Publications, 2004).zbMATHGoogle Scholar
  32. 32.
    C.P. Przybyla and D.L. McDowell, Int. J. Plast 26, 372 (2010).CrossRefGoogle Scholar
  33. 33.
    C.P. Przybyla and D.L. McDowell, Int. J. Plast 27, 1871 (2011).CrossRefGoogle Scholar
  34. 34.
    G.M. Castelluccio and D.L. McDowell, Int. J. Fatigue 82, 521 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations