Skip to main content

Advertisement

Log in

3D Printed Injection Molding for Prototyping Batch Fabrication of Macroscale Graphene/Paraffin Spheres for Thermal Energy Management

  • Functional Nanomaterials for Energy Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Paraffin is a phase change material that can store thermal energy, and it has been used in a variety of applications. However, the low thermal conductivity of paraffin hinders the further expansion of its use in many applications. Thus, it is of great interest to identify and develop composites that can improve the thermal conductivity of paraffin to maximize its heat capacity. Here, we report a facile fabrication method for producing spherical paraffin/graphene composites with thermal conductivities enhanced by 57%. We used fused deposition 3D printing to build a prototype mold in which spherical paraffin/graphene composites were successfully fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Pérez-Lombard, J. Ortiz, and C. Pout, Energy Build. 40, 394 (2008).

    Article  Google Scholar 

  2. J. Twidell and T. Weir, Renewable Energy Resources (London: Routledge, 2015).

    Book  Google Scholar 

  3. W. Su, J. Darkwa, and G. Kokogiannakis, Renew. Sustain. Energy Rev. 48, 373 (2015).

    Article  Google Scholar 

  4. L. Shao and S. Riffat, Appl. Therm. Eng. 17, 393 (1997).

    Article  Google Scholar 

  5. K. Biswas, J. Lu, P. Soroushian, and S. Shrestha, Appl. Energy 131, 517 (2014).

    Article  Google Scholar 

  6. X. Jin and X. Zhang, Appl. Therm. Eng. 31, 1576 (2011).

    Article  Google Scholar 

  7. H.H. Öztürk, Energy Conserv. Manag. 46, 1523 (2005).

    Article  Google Scholar 

  8. G. Thalmaier, N.A. Sechel, and I. Vida-Simiti, JOM 71, 1049 (2019).

    Article  Google Scholar 

  9. N. Şahan, M. Fois, and H. Paksoy, Sol. Energy Mater. Sol. Cells 137, 61 (2015).

    Article  Google Scholar 

  10. J.R. Rumble, D.R. Lide, and T.J. Bruno, Handbook of Chemistry and Physics (Boca Raton: CRC Press, 2010).

    Google Scholar 

  11. F. Yavari, H.R. Fard, K. Pashayi, M.A. Rafiee, A. Zamiri, Z. Yu, R. Ozisik, T. Borca-Tasciuc, and N. Koratkar, J. Phys. Chem. C 115, 8753 (2011).

    Article  Google Scholar 

  12. M.A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z.-Z. Yu, and N. Koratkar, Small 6, 179 (2010).

    Article  Google Scholar 

  13. Z. Liu, Z. Yu, T. Yang, D. Qin, S. Li, G. Zhang, F. Haghighat, and M.M. Joybari, Build. Environ. 144, 281 (2018).

    Article  Google Scholar 

  14. K.-H. Hwangbo, M.R. Kim, C.-S. Lee, and K.Y. Cho, Soft Matter 7, 10874 (2011).

    Article  Google Scholar 

  15. X. Wang, L. Zhang, Y.-H. Yu, L. Jia, M. Sam Mannan, Y. Chen, and Z. Cheng, Sci. Rep. 5, 13357 (2015).

    Article  Google Scholar 

  16. H.N. Yow and A.F. Routh, Soft Matter 2, 940 (2006).

    Article  Google Scholar 

  17. N. Bhattacharjee, A. Urrios, S. Kang, and A. Folch, Lab Chip 16, 1720 (2016).

    Article  Google Scholar 

  18. N. Fang, C. Sun, and X. Zhang, Appl. Phys. A 79, 1839 (2004).

    Article  Google Scholar 

  19. S.G. Bucella, G. Nava, K.C. Vishunubhatla, and M. Caironi, Org. Electron. 14, 2249 (2013).

    Article  Google Scholar 

  20. H.H. Bin Hamzah, O. Keattch, D. Covill, and B.A. Patel, Sci. Rep. 8, 9135 (2018).

    Article  Google Scholar 

  21. J.W. Stansbury and M.J. Idacavage, Dent. Mater. 32, 54 (2016).

    Article  Google Scholar 

  22. M.N.A. Hawlader, M.S. Uddin, and H.J. Zhu, Int. J. Energy Res. 26, 159 (2002).

    Article  Google Scholar 

  23. G. Li, X. Zhang, J. Wang, and J. Fang, J. Mater. Chem. A 4, 17042 (2016).

    Article  Google Scholar 

  24. T. Geminger and S. Jarka, Specialized Injection Molding Techniques, ed. H.-P. Heim (Elsevier, 2016), pp. 165–210.

  25. A. Said, A. Salah, G. Fattah, A. Said, A. Salah, and G.A. Fattah, Mater. (Basel). 10, 525 (2017).

    Article  Google Scholar 

  26. A.I. Alrashdan and E.H. Alsharaeh, in International Conference on Composite Science and Technology, 2015.

  27. X. Liu and Z. Rao, Thermochim. Acta 647, 15 (2017).

    Article  Google Scholar 

  28. X. Tang, L. Luo, Y. Guo, Z. Yang, K. Zhang, R. He, J. Fan, and W. Yang, Fullerenes. Nanotub. Carbon Nanostruct. 27, 375 (2019).

    Article  Google Scholar 

  29. Q. Zhao, W. Yang, H. Zhang, F. He, H. Yan, R. He, K. Zhang, and J. Fan, Colloids Surf. A 575, 42 (2019).

    Article  Google Scholar 

  30. J. Renteria, D. Nika, A. Balandin, J.D. Renteria, D.L. Nika, and A.A. Balandin, Appl. Sci. 4, 525 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work made use of the University of Utah’s USTAR shared facilities, which are supported in part by the NSF’s Materials Research, Science, and Engineering Center (MRSEC) Program at the University of Utah, Award No. DMR-1121252. This work also was supported by the Korea Institute of Science and Technology’s (KIST’s) Institutional Program (Project No. 2E29700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sun Choi or Jiyoung Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Shin, D., Jang, A. et al. 3D Printed Injection Molding for Prototyping Batch Fabrication of Macroscale Graphene/Paraffin Spheres for Thermal Energy Management. JOM 71, 4569–4577 (2019). https://doi.org/10.1007/s11837-019-03803-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03803-2

Navigation