Skip to main content
Log in

Carbothermal Reduction of Spent Mobile Phones Batteries for the Recovery of Lithium, Cobalt, and Manganese Values

  • Extraction and Recycling of Battery Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Lithium-ion batteries have a limited lifespan and ever-growing demand and the presence of critical metals such as lithium and cobalt make their recycling inevitable. In this study, discarded mixed mobile batteries were discharged, dismantled, and separated into cathode and anode sheets, followed by attritor crushing. The cathode material comprises LiCoO2 and LiMn2O4, while graphite is present in the anode material. The cathode material was indigenously reduced with purified graphite in a muffle furnace at different times and dosages. A Taguchi statistical design is employed for the optimization of reduction parameters and the obtained magnetic fraction contains cobalt and manganese oxide, whereas graphite and lithium carbonate were found in a nonmagnetic fraction and dried solution. The composition, saturation magnetization and product phases obtained in optimum conditions (900°C, 7.5% graphite, 45 min and 800°C, 7.5% graphite, 45 min) are: Co: ~ 80 to 84%; Mn: 6–10%; and saturation magnetization: 105–114 emu/g with Co, CoO and MnO phases, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Meshram, B.D. Pandey, and T.R. Mankhand, Hydrometallurgy 150, 192 (2014).

    Article  Google Scholar 

  2. Indian Bureau of Mines, Indian Minerals Yearbook, (Part-II: Metals & Alloys) 52 Cobalt.

  3. J. Li, G. Wang, and Z. Xu, J. Hazard. Mater. 302, 97 (2016).

    Article  Google Scholar 

  4. S.R. Sunil, S. Vishvakarma, A. Barnwal, and N. Dhawan, JOM (2019). https://doi.org/10.1007/s11837-019-03540-6.

    Article  Google Scholar 

  5. T. Georgi-Maschler, B. Friedrich, R. Weyhe, H. Heegn, and M. Rutz, J. Power Sources 207, 173 (2012).

    Article  Google Scholar 

  6. J. Hu, J. Zhang, H. Li, Y. Chen, and C. Wang, J. Power Sources 351, 192 (2017).

    Article  Google Scholar 

  7. F. Wang, T. Zhang, Y. He, Y. Zhao, S. Wang, G. Zhang, and Y. Feng, J. Clean. Prod. 185, 646 (2018).

    Article  Google Scholar 

  8. W. Gao, J. Song, H. Cao, X. Lin, X. Zhang, X. Zheng, and Z. Sun, J. Clean. Prod. 178, 833 (2018).

    Article  Google Scholar 

  9. Q. Meng, Y. Zhang, and P. Dong, J. Clean. Prod. 180, 64 (2018).

    Article  Google Scholar 

  10. Y. Chen, N. Liu, F. Hu, L. Ye, Y. Xi, and S. Yang, Waste Manag. 75, 469 (2018).

    Article  Google Scholar 

  11. L. Li, W. Qu, X. Zhang, J. Lu, R. Chen, F. Wu, and K. Amine, J. Power Sources 282, 544 (2015).

    Article  Google Scholar 

  12. L. Li, Y. Bian, X. Zhang, Y. Guan, E. Fan, F. Wu, and R. Chen, Waste Manag. 71, 362 (2018).

    Article  Google Scholar 

  13. X. Chen, H. Ma, C. Luo, and T. Zhou, J. Hazard. Mater. 326, 77 (2017).

    Article  Google Scholar 

  14. P. Meshram, B.D. Pandey, and T.R. Mankhand, Chem. Eng. J. 281, 418 (2015).

    Article  Google Scholar 

  15. X. Zeng, J. Li, and B. Shen, J. Hazard. Mater. 295, 112 (2015).

    Article  Google Scholar 

  16. W. Lv, Z. Wang, H. Cao, X. Zheng, W. Jin, Y. Zhang, and Z. Sun, Waste Manag. 79, 545 (2018).

    Article  Google Scholar 

  17. P. Meshram, B.D. Pandey, T.R. Mankhand, and H. Deveci, J. Ind. Eng. Chem. 43, 117 (2016).

    Article  Google Scholar 

  18. L. Yun, D. Linh, L. Shui, X. Peng, A. Garg, M.L.P. Le, and J. Sandoval, Resour. Conserv. Recycl. 136, 198 (2018).

    Article  Google Scholar 

  19. G.P. Nayaka, K.V. Pai, G. Santhosh, and J. Manjanna, Hydrometallurgy 161, 54 (2016).

    Article  Google Scholar 

  20. E.G. Pinna, M.C. Ruiz, M.W. Ojeda, and M.H. Rodriguez, Hydrometallurgy 167, 66 (2017).

    Article  Google Scholar 

  21. P. Liu, L. Xiao, Y. Tang, Y. Chen, L. Ye, and Y. Zhu, J. Therm. Anal. Calorim. 136, 1323 (2018).

    Article  Google Scholar 

  22. S.P. Barik, G. Prabaharan, and B. Kumar, Waste Manag. 51, 222 (2016).

    Article  Google Scholar 

  23. X. Zheng, Z. Zhu, X. Lin, Y. Zhang, Y. He, H. CaO, and Z. Sun, Engineering 4, 361 (2018).

    Article  Google Scholar 

  24. Z. Huang, J. Zhu, R. Qiu, J. Ruan, and R. Qui, J. Clean. Prod. 229, 1148 (2019).

    Article  Google Scholar 

  25. J. Xiao, J. Li, and Z. Xu, Environ. Sci. Technol. 51, 11960 (2017).

    Article  Google Scholar 

  26. D. Wang, X. Zhang, H. Chen, and J. Sun, Miner. Eng. 126, 28 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank and acknowledge the funding received from the Indian Institute of Technology, Roorkee under Faculty Initiation Grant; FIG-100714, and Rahul Singh for meaningful discussions and raw material preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Dhawan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pindar, S., Dhawan, N. Carbothermal Reduction of Spent Mobile Phones Batteries for the Recovery of Lithium, Cobalt, and Manganese Values. JOM 71, 4483–4491 (2019). https://doi.org/10.1007/s11837-019-03799-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03799-9

Navigation