Skip to main content
Log in

Clean Recycling Process for Lead Oxide Preparation from Spent Lead–Acid Battery Pastes Using Tartaric Acid–Sodium Tartrate as a Transforming Agent

  • Extraction and Recycling of Battery Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A clean recycling process for waste lead–acid battery paste was proposed, where tartaric acid-sodium tartrate mixed solution was used as the transforming agent. First, lead tartrate [Pb(C4H4O6)] was prepared by the reaction of paste and the transforming agent, and then it was calcined to obtain lead oxide powder. The lead recovery rate and desulfurization rate were 97.55% and 99.02%, respectively. In addition, pure lead tartrate was obtained with a narrow particle size distribution. Next, the thermal behavior of lead tartrate was investigated, and the results show that it rapidly decomposed into PbO in air and remained stable until 800°C. However, in an argon atmosphere, the weight loss rate approached that of metallic lead generation. The study of the calcination of lead tartrate in air and argon atmospheres showed that the main product was a PbO and Pb mixture; however, the product morphologies were different. Ultra-fine lead oxide particles with a particle size < 100 nm were obtained by calcining in an argon atmosphere. With increasing calcination temperature, more metallic lead was formed. The main advantages of this process are the use of a clean and non-toxic transforming agent and the direct production of ultra-fine lead oxide through calcination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Tian, Y. Gong, Y.F. Wu, A. Agyeiwaa, and T.Y. Zuo, Resour. Conserv. Recycl. 93, 75 (2014).

    Google Scholar 

  2. D.N. Wilson, JOM 58, 24 (2006).

    Google Scholar 

  3. X. Tian, Y. Gong, Y.F. Wu, and T.Y. Zuo, Waste Manag. Res. 33, 986 (2015).

    Google Scholar 

  4. S.G. Ji, C.R. Cherry, M. Bechle, and Y. Wu, Environ. Sci. Technol. 46, 2018 (2012).

    Google Scholar 

  5. A.D. Ballantyne, J.P. Hallett, D.J. Riley, N. Shah, and D.J. Payne, R. Soc. 5, 1 (2018).

    Google Scholar 

  6. H. Pan, Y. Geng, H.J. Dong, M. Ali, and S.J. Xiao, Resour. Conserv. Recycl. 140, 13 (2019).

    Google Scholar 

  7. A. Agrawal, K.K. Sahu, and B.D. Pandey, Waste Manag. Res. 22, 240 (2004).

    Google Scholar 

  8. L.C. Ferracin, A.E. Chacon-Sanhueza, R.A. Davoglio, L.O. Rocha, D.J. Caffeu, A.R. Fontanetti, R.C. Rocha-Filho, S.R. Biaggio, and N. Bocchi, Hydrometallurgy 65, 137 (2002).

    Google Scholar 

  9. Q. Wang, W. Liu, X. Yuan, H.R. Tang, Y.Z. Tang, M.S. Wang, J. Zuo, Z.L. Song, and J. Sun, J. Clean. Prod. 174, 1262 (2018).

    Google Scholar 

  10. L.G. Chen, Z.C. Xu, M. Liu, Y.M. Huang, R.F. Fan, Y.H. Su, G.C. Hu, X.W. Peng, and X.C. Peng, Sci. Total Environ. 429, 191 (2012).

    Google Scholar 

  11. Z. Sun, H.B. Cao, X.H. Zhang, X. Lin, W.W. Zheng, G.Q. Cao, Y. Sun, and Y. Zhang, Waste Manag. 64, 190 (2017).

    Google Scholar 

  12. W.F. Li, J. Zhan, Y.Q. Fan, C. Wei, C.F. Zhang, and J.Y. Hwang, JOM 69, 784 (2017).

    Google Scholar 

  13. T.W. Ellis and A.H. Mirza, J. Power Sources 195, 4525 (2010).

    Google Scholar 

  14. X.F. Zhu, J.K. Yang, L.X. Gao, J.W. Liu, D.N. Yang, X.J. Sun, W. Zhang, Q. Wang, L. Li, D.S. He, and R.V. Kumar, Hydrometallurgy 134–135, 47 (2013).

    Google Scholar 

  15. R.D. Prengaman, Recovering Lead from Batteries. JOM 47, 31 (1995).

    Google Scholar 

  16. W.H. Yu, P.Y. Zhang, J.K. Yang, M.Y. Li, Y.C. Hu, S. Liang, J.X. Wang, S.Y. Li, K.K. Xiao, H.J. Hou, J.P. Hu, and R.V. Kumar, J. Clean. Prod. 210, 1534 (2019).

    Google Scholar 

  17. Y. Gong, J.E. Dutrizac, and T.T. Chert, Hydrometallurgy 31, 175 (1992).

    Google Scholar 

  18. J.F. Zhang, L. Yi, L.C. Yang, Y. Huang, W.F. Zhou, and W.J. Bian, Hydrometallurgy 160, 123 (2016).

    Google Scholar 

  19. A.G. Morachevskii, Y.S. Kuznetsova, and O.A. Kal’ko, Russ. J. Appl. Chem. 78, 1543 (2005).

    Google Scholar 

  20. V.P. Yanakieva, G.A. Haralampiev, and N.K. Lyakov, J. Power Sources 85, 178 (2009).

    Google Scholar 

  21. T. Buzatu, M.I. Petrescu, V.G. Ghica, M. Buzatu, and G. Iacob, Asia-Pac. J. Chem. Eng. 10, 125 (2014).

    Google Scholar 

  22. N.K. Lyakov, D.A. Atanasova, V.S. Vassilev, and G.A. Haralampiev, J. Power Sources 171, 960 (2007).

    Google Scholar 

  23. Y. Ma, J.F. Zhang, Y. Huang, and J. Cao, Hydrometallurgy 178, 146 (2018).

    Google Scholar 

  24. Y.J. Ma and K.Q. Qiu, Waste Manag. 40, 151 (2015).

    Google Scholar 

  25. E. Expósito, J. Iniesta, J. González-García, V. Montiel, and A. Aldaz, J. Power Sources 92, 260 (2001).

    Google Scholar 

  26. N.D. Nikolić, K.I. Popov, P.M. Živković, and G. Branković, J. Electroanal. Chem. 691, 66 (2013).

    Google Scholar 

  27. X. Zhang, Y.Z. Sun, and J.Q. Pan, Int. J. Electrochem. Sci. 12, 6966 (2017).

    Google Scholar 

  28. T. Dobrev and S. Rashkov, Hydrometallurgy 40, 277 (1996).

    Google Scholar 

  29. D. Pletcher, H.T. Zhou, G. Kear, C.T.J. Low, F.C. Walsh, and R.G.A. Wills, J. Power Sources 180, 621 (2008).

    Google Scholar 

  30. C.S. Chen, Y.J. Shih, and Y.H. Huang, Waste Manag. 52, 212 (2016).

    Google Scholar 

  31. Y.Y. Gu, Q.H. Zhou, and T.Z. Yang, Trans. Nonferrous Metal. Soc. 21, 1407 (2011).

    Google Scholar 

  32. G. Díaz, D. Martín, C. Frías, and F. Sánchez, JOM 53, 30 (2001).

    Google Scholar 

  33. X.F. Zhu, X. He, J.K. Yang, L.X. Gao, J.W. Liu, D.N. Yang, X.J. Sun, W. Zhang, Q. Wang, and R.V. Kumer, J. Hazard. Mater. 250–251, 387 (2013).

    Google Scholar 

  34. C. Ma, Y.H. Shu, and H.Y. Chen, J. Electrochem. Soc. 163, 2240 (2016).

    Google Scholar 

  35. M.S. Sonmez and R.V. Kumar, Hydrometallurgy 95, 82 (2009).

    Google Scholar 

  36. P.G. Gao, W.X. Lv, R. Zhang, Y. Liu, G.H. Li, X.F. Bu, and L.X. Lei, J. Power Sources 248, 363 (2014).

    Google Scholar 

  37. P.G. Gao, Y. Liu, W.X. Lv, R. Zhang, W. Liu, X.F. Bu, G.H. Li, and L.X. Lei, J. Power Sources 265, 192 (2014).

    Google Scholar 

  38. M.S. Sonmez and R.V. Kumar, Hydrometallurgy 95, 53 (2009).

    Google Scholar 

  39. L. Lei, X.F. Zhu, D.N. Yang, L.X. Gao, J.W. Liu, R.V. Kumar, and J.K. Yang, J. Hazard. Mater. 203–204, 274 (2012).

    Google Scholar 

  40. Y. Li, S.H. Yang, P. Taskinen, J. He, F.W. Liao, R.B. Zhu, Y.M. Chen, C.B. Tang, Y.J. Wang, and A. Jokilaakso, J. Clean. Prod. 162–171, 217 (2019).

    Google Scholar 

  41. R.R. Hao, X.Y. Fang, and S.C. Niu, The Series of Inorganic Chemistry, Vol. 3 (Beijing: China Science Press, 1988).

    Google Scholar 

Download references

Acknowledgements

This project was supported financially by the National Natural Science Foundation of China (Grant No. 51604105), for which the authors are grateful. We also acknowledge the helpful comments and suggestions of the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longgang Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, Z., Liu, S., Hu, Y. et al. Clean Recycling Process for Lead Oxide Preparation from Spent Lead–Acid Battery Pastes Using Tartaric Acid–Sodium Tartrate as a Transforming Agent. JOM 71, 4509–4517 (2019). https://doi.org/10.1007/s11837-019-03798-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03798-w

Navigation