Skip to main content
Log in

Efficient Shape-Stabilized Phase-Change Material Based on Novel Mesoporous Carbon Microspheres as a Matrix for Polyethylene Glycol: Preparation and Thermal Properties

  • Functional Nanomaterials for Energy Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Novel mesoporous carbon microspheres (MCMS), which exhibited a large surface area and were developed by the pyrolysis of polydopamine microspheres (PDAMS), were used as a supporting material for polyethylene glycol (PEG) to prepare a new type of efficient form-stable phase-change material (MCMS-PEG). Using a simple vacuum impregnation strategy, the preparation of polydopamine microspheres via a biomimetic method was facile, simple and environmentally friendly. Characterization of MCMS-PEG was performed by scanning electron microscopy (SEM), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). The results suggested that MCMS-PEG possessed high latent heats of 112.08 J/g during the melting process and 107.34 J/g during the solidification process. Additionally, MCMS-PEG presented an enhanced thermal conductivity and excellent thermal stability. Therefore, the novel mesoporous carbon microspheres developed in this study could be used as efficient supports for the preparation of shape-stabilized phase-change materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Q. Zhang and J. Liu, Nano Energy 2, 863 (2013).

    Google Scholar 

  2. H. Zhao, M. Zhou, L. Wen, and Y. Lei, Nano Energy 13, 790 (2015).

    Google Scholar 

  3. A. Laaouatni, N. Martaj, R. Bennacer, M. Lachi, M.E. Omari, and M.E. Ganaoui, Energy Build. 187, 50 (2019).

    Google Scholar 

  4. L.M. Zhong, X.W. Zhang, Y. Luan, G. Wang, Y.H. Feng, and D.L. Feng, Sol. Energy 107, 63 (2014).

    Google Scholar 

  5. H.X. Ji, D.P. Sellan, M.T. Pettes, X.H. Kong, J.Y. Ji, L. Shi, and R.S. Ruoff, Energy Environ. Sci. 7, 1185 (2014).

    Google Scholar 

  6. K.P. Lin, Y.P. Zhang, X. Xu, H.F. Di, R. Yang, and P.H. Qin, Energy Build. 37, 215 (2005).

    Google Scholar 

  7. Z.Y. Wang, F. Qiu, W.S. Yang, and X.D. Zhao, Renew. Sustain. Energy Rev. 52, 645 (2015).

    Google Scholar 

  8. C.Y. Wang, L.L. Feng, W. Li, J. Zheng, W.H. Tian, and X.G. Li, Sol. Energy Mater. Sol. Cells 105, 21 (2012).

    Google Scholar 

  9. Y.Y. Yang, W.B. Kong, and X.F. Cai, Energy Build. 158, 37 (2018).

    Google Scholar 

  10. A. Biçer and A. Sarı, Sol. Energy Mater. Sol. Cells 102, 125 (2012).

    Google Scholar 

  11. C.L. Wang, K.L. Yeh, C.W. Chen, Y. Lee, H.L. Lee, and T. Lee, Appl. Energy 191, 239 (2017).

    Google Scholar 

  12. K. Tomosuke and O. Masaru, Phys. Chem. Chem. Phys. 16, 5495 (2014).

    Google Scholar 

  13. X. Py, R. Olives, and S. Mauran, Int. J. Heat Mass Transf. 44, 2727 (2001).

    Google Scholar 

  14. Y. Jiang, E.Y. Ding, and G.K. Li, Polymer 43, 117 (2002).

    Google Scholar 

  15. Y. Chen, H. Ding, B.F. Wang, Q. Shi, J.K. Gao, Z.X. Cui, and Y.C. Wan, J. Clean. Prod. 208, 951 (2019).

    Google Scholar 

  16. X.B. Huang, X. Chen, A. Li, D. Atinafu, H.Y. Gao, W.J. Dong, and G. Wang, Chem. Eng. J. 356, 641 (2019).

    Google Scholar 

  17. B. Xu, C.X. Zhang, C.H. Chen, J. Zhou, C.D. Lu, and Z.J. Ni, J. Therm. Anal. Calorim. 133, 1417 (2018).

    Google Scholar 

  18. X.G. Zhang, R.L. Wen, C. Tang, B.G. Wu, Z.H. Huang, X. Min, Y.T. Huang, Y.G. Liu, M.H. Fang, and X.W. Wu, Energy Build. 130, 113 (2016).

    Google Scholar 

  19. G.H. Jia, Z. Li, P. Liu, and Q.S. Jing, J. Non-Cryst. Solids 482, 192 (2018).

    Google Scholar 

  20. X.G. Zhang, Z.Y. Yin, D.Z. Meng, Z.H. Huang, R.L. Wen, Y.T. Huang, X. Min, Y.G. Liu, M.H. Fang, and X.W. Wu, Renew. Energy 112, 113 (2017).

    Google Scholar 

  21. X. Guo, Y.H. Huang, and J.Z. Cao, Energy Build. 58, 1257 (2018).

    Google Scholar 

  22. A. Sarı, A. Bicer, A. Al-Ahmed, F.A. Al-Sulaiman, M.H. Zahir, and S.A. Mohamedb, Sol. Energy Mater. Sol. Cells 179, 353 (2018).

    Google Scholar 

  23. A. Sarı, Energy Build. 96, 193 (2015).

    Google Scholar 

  24. N. Justh, B. Berke, K. László, L.P. Bakos, A. Szabó, K. Hernádi, and I.M. Szilágyi, Appl. Surf. Sci. 453, 245 (2018).

    Google Scholar 

  25. T.T. Qian, J.H. Li, W.W. Feng, and H.E. Nian, Energy Convers. Manag. 143, 96 (2017).

    Google Scholar 

  26. K.L. Ai, Y.L. Liu, C.P. Ruan, L.H. Lu, and G.Q. Lu, Adv. Mater. 25, 998 (2013).

    Google Scholar 

  27. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, and J.M. Tour, Nature 458, 872 (2009).

    Google Scholar 

  28. J.L. Dalsin, B.H. Hu, B.P. Lee, and P.B. Messersmith, J. Am. Chem. Soc. 125, 4253 (2003).

    Google Scholar 

  29. H. Lee, S.M. Dellatore, W.M. Miller, and P.B. Messersmith, Science 318, 426 (2007).

    Google Scholar 

  30. Q.R. Zhang, Y.X. Li, Q.G. Yang, H. Chen, X.Q. Chen, T.F. Jiao, and Q.M. Peng, J. Hazard. Mater. 342, 732 (2018).

    Google Scholar 

  31. J.K. Gao, L.A. Hou, G.H. Zhang, and P. Gu, J. Hazard. Mater. 286, 325 (2015).

    Google Scholar 

  32. D. Kołodyńska, J. Krukowska, and P. Thomas, Chem. Eng. J. 307, 353 (2017).

    Google Scholar 

  33. W.H. Zhang, S.Y. Mao, H. Chen, L. Huang, and R.L. Qiu, Bioresour. Technol. 147, 545 (2013).

    Google Scholar 

  34. G. Moreno-Fernandez, S. Perez-Ferreras, L. Pascual, I. Llorente, J. Ibañez, and J.M. Rojo, Electrochim. Acta 268, 121 (2018).

    Google Scholar 

  35. B. Zhao, D. O’Connor, J.L. Zhang, T.Y. Peng, Z.T. Shen, D.C.W. Tsang, and D.Y. Hou, J. Clean. Prod. 174, 977 (2018).

    Google Scholar 

  36. W. Liu, H. Jiang, and H. Yu, Chem. Rev. 115, 12251 (2015).

    Google Scholar 

  37. Z.J. Feng and L.Z. Zhu, Front. Environ. Sci. Eng. 12, 1 (2018).

    Google Scholar 

  38. A. Sarı, A. Bicer, F.A. Al-Sulaiman, A. Karaipekli, and V.V. Tyagi, Energy Build. 164, 166 (2018).

    Google Scholar 

  39. Y. Deng, J.H. Li, T.T. Qian, W.M. Guan, Y.L. Li, and X.P. Yin, Chem. Eng. J. 295, 427 (2016).

    Google Scholar 

  40. X.G. Zhang, R.L. Wen, C. Tang, B.G. Wu, Z.H. Huang, X. Min, Y.T. Huang, Y.G. Liu, M.H. Fang, and X.W. Wu, Energy Build. 130, 113 (2016).

    Google Scholar 

  41. C.E. Li, H. Yu, Y. Song, and M. Zhao, Renew Energy 121, 45 (2018).

    Google Scholar 

  42. Y.H. Jia, S.L. Shi, J. Liu, S.M. Su, Q. Liang, X.B. Zeng, and T.S. Li, Appl Sci. 8, 1019 (2018).

    Google Scholar 

  43. T.T. Qian, J.H. Li, H.W. Ma, and J. Yang, Sol. Energy Mater. Sol. Cells 132, 29 (2015).

    Google Scholar 

  44. L.L. Feng, C.Y. Wang, P. Song, H.B. Wang, and X.R. Zhang, Appl. Therm. Eng. 90, 952 (2015).

    Google Scholar 

  45. Y. Chen, Z.X. Cui, H. Ding, Y.C. Wan, Z.B. Tang, and J.K. Gao, Int. J. Mol. Sci. 19, 3055 (2018).

    Google Scholar 

  46. L.L. Feng, W. Zhao, J. Zheng, S. Frisco, P. Song, and X.G. Li, Sol. Energy Mater. Sol. Cells 95, 3550 (2011).

    Google Scholar 

  47. R.L. Wen, X.G. Zhang, Y.T. Huang, Z.Y. Yin, Z.H. Huang, M.H. Fang, Y.G. Liu, and X.W. Wu, Energy Build. 139, 197 (2017).

    Google Scholar 

  48. T.T. Qian, J.H. Li, H.W. Ma, and J. Yang, Sol. Energy Mater. Sol. Cells 132, 29 (2015).

    Google Scholar 

  49. T. Khadiran, M.Z. Hussein, Z. Zainal, and R. Rusli, J Taiwan Inst. Chem. E 55, 189 (2015).

    Google Scholar 

  50. M.B. Clark, J.A. Gardella, T.M. Schultz, D.G. Patil, and L. Salvati, Anal. Chem. 62, 949 (1990).

    Google Scholar 

  51. I. Kaminska, M.R. Das, Y. Coffinier, J. Niedziolka-Jonsson, J. Sobczak, P. Woisel, J. Lyskawa, M. Opallo, R. Boukherroub, and S. Szunerits, App. Mater. Interfaces 4, 1016 (2012).

    Google Scholar 

  52. Z.Y. Xi, Y.Y. Xu, L.P. Zhu, Y. Wang, and B.K. Zhu, J. Membr. Sci. 327, 244 (2009).

    Google Scholar 

  53. X.B. Huang, X. Chen, A. Li, D. Atinafu, H.Y. Gao, W.J. Dong, and G. Wang, Chem. Eng. J. 356, 641 (2019).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the National Natural Science Foundation of China (Nos. 41776105 and 51606168), the Science and Technology Planning Project of Zhoushan of China (Nos. 2015C41010 and 2018C21017) and the Zhejiang Provincial Natural Science Foundation of China (No. LY18E060007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengshou Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 532 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, Y., Chen, Z. et al. Efficient Shape-Stabilized Phase-Change Material Based on Novel Mesoporous Carbon Microspheres as a Matrix for Polyethylene Glycol: Preparation and Thermal Properties. JOM 71, 4547–4555 (2019). https://doi.org/10.1007/s11837-019-03787-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03787-z

Navigation