Skip to main content
Log in

Application of Combined W-Temper and Cold Forming Technology to High-Strength Aluminum Alloy Automotive Parts

  • Aluminum: Shape Casting and Forming
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, a room temperature forming process for high-strength aluminum alloys was investigated. To overcome the low formability of the peak-aged 7075 aluminum alloy (7075-T6) at room temperature, the sheet metal was subjected to solution heat treatment followed by rapid quenching. Mechanical tests, including uniaxial and balanced biaxial tension tests, were performed, and the Nakajima test was conducted to evaluate the formability of the sheet metal. On the basis of the plastic deformation behavior, finite element models including the plastic yielding and strain hardening laws were constructed. The proposed forming process incorporating the W-temper heat treatment was successfully applied to a realistic automotive part, which could not be manufactured by conventional room temperature forming without prior heat treatment. The numerical accuracies among various plasticity models were evaluated from a comparison of the thickness profiles. In addition, the paint-bake process was applied to the automotive component to evaluate the strength recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Pradeau, S. Thuillier, and J.W. Yoon, Int. J. Mech. Sci. 119, 23 (2016).

    Article  Google Scholar 

  2. R. Roth, J. Clark, and A. Kelkar, JOM 53, 28 (2001).

    Article  Google Scholar 

  3. M. Kumar, G. Kirov, F. Grabner, and E. Mukeli, Mater. Sci. Forum 879, 1036 (2016).

    Article  Google Scholar 

  4. J.A. Österreicher, G. Kirov, S.S.A. Gerstl, E. Mukeli, F. Grabner, and M. Kumar, J. Alloys Compd. 740, 167 (2018).

    Article  Google Scholar 

  5. G. Palumbo and L. Tricarico, J. Mater. Process. Technol. 184, 115 (2007).

    Article  Google Scholar 

  6. M. Kleiner, M. Geiger, and A. Klaus, CIRP Ann. - Manuf. Technol. 52, 521 (2003).

    Article  Google Scholar 

  7. S. Kurukuri, A.H. van den Boogaard, and A. Miroux, J. Mater. Process. Technol. 209, 5636 (2009).

    Article  Google Scholar 

  8. S. Toros, F. Ozturk, and I. Kacar, J. Mater. Process. Technol. 207, 1 (2008).

    Article  Google Scholar 

  9. T.A. Ivanoff, J.T. Carter, L.G. Hector, and E.M. Taleff, Metall. Mater. Trans. A 50, 1545 (2019).

    Article  Google Scholar 

  10. H.J. Bong, F. Barlat, D.C. Ahn, H.-Y. Kim, and M.-G. Lee, Int. J. Mech. Sci. 75, 94 (2013).

    Article  Google Scholar 

  11. Y.H. Moon, S.S. Kang, J.R. Cho, and T.G. Kim, J. Mater. Process. Technol. 132, 365 (2003).

    Article  Google Scholar 

  12. M. Kumar, C. Poletti, and H.P. Degischer, Mater. Sci. Eng. A 561, 362 (2013).

    Article  Google Scholar 

  13. H. Laurent, J. Coer, P.Y. Manach, M.C. Oliveira, and L.F. Menezes, Int. J. Mech. Sci. 93, 59 (2015).

    Article  Google Scholar 

  14. M.S. Mohamed, A.D. Foster, J. Lin, D.S. Balint, and T.A. Dean, Int. J. Mach. Tools Manuf. 53, 27 (2012).

    Article  Google Scholar 

  15. H. Karbasian and A.E. Tekkaya, J. Mater. Process. Technol. 210, 2103 (2010).

    Article  Google Scholar 

  16. J. Lu, Y. Song, L. Hua, K. Zheng, and D. Dai, J. Alloys Compd. 767, 856 (2018).

    Article  Google Scholar 

  17. H. Rong, P. Hu, L. Ying, W. Hou, and J. Zhang, Int. J. Mech. Sci. 156, 59 (2019).

    Article  Google Scholar 

  18. P.F. Bariani, S. Bruschi, A. Ghiotti, and F. Michieletto, CIRP Ann. Manuf. Technol. 62, 251 (2013).

    Article  Google Scholar 

  19. K. Omer, A. Abolhasani, S. Kim, T. Nikdejad, C. Butcher, M. Wells, S. Esmaeili, and M. Worswick, J. Mater. Process. Technol. 257, 170 (2018).

    Article  Google Scholar 

  20. G. Anyasodor and C. Koroschetz, J. Phys: Conf. Ser. 896, 12093 (2017).

    Google Scholar 

  21. N.R. Harrison and S.G. Luckey, SAE Int. J. Mater. Manuf. 7, 567 (2014).

    Article  Google Scholar 

  22. A. Jenab and A.K. Taheri, Int. J. Mech. Sci. 78, 97 (2014).

    Article  Google Scholar 

  23. A. Ghiotti, E. Simonetto, and S. Bruschi, Wear 426–427, 348 (2019).

    Article  Google Scholar 

  24. A.D.P. LaDelpha, H. Neubing, and D.P. Bishop, Mater. Sci. Eng. A 520, 105 (2009).

    Article  Google Scholar 

  25. D.A. Tanner and J.S. Robinson, J. Mater. Process. Technol. 153–154, 998 (2004).

    Article  Google Scholar 

  26. A.G. Leacock, C. Howe, D. Brown, O.-G. Lademo, and A. Deering, Mater. Des. 49, 160 (2013).

    Article  Google Scholar 

  27. P. Oberhauser, N. Sotirov, T. Grohmann, and P. Schulz, in TTP 2013Tools Technol. Process. Ultra High Strength Mater. (Verl. der Techn. Univ. Graz, 2013), pp. 157–170

  28. P.A. Schuster, J.A. Österreicher, G. Kirov, C. Sommitsch, O. Kessler, and E. Mukeli, Metals (Basel). 9, 305 (2019).

    Article  Google Scholar 

  29. E.S. de Argandona, L. Galdos, R. Ortubay, J. Mendiguren, and X. Agirretxe, Key Eng. Mater. 651–653, 199 (2015).

    Article  Google Scholar 

  30. R. Hill, Proc. R. Soc. Lond. 193, 281 (1948).

    Article  Google Scholar 

  31. F. Barlat, D.J. Lege, and J.C. Brem, Int. J. Plast. 7, 693 (1991).

    Article  Google Scholar 

  32. F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.H. Choi, and E. Chu, Int. J. Plast. 19, 1297 (2003).

    Article  Google Scholar 

  33. F. Barlat, J.W. Yoon, and O. Cazacu, Int. J. Plast. 23, 876 (2007).

    Article  Google Scholar 

  34. J. Lee, H. Park, S.-J. Kim, Y.-N. Kwon, and D. Kim, Int. J. Mech. Sci. 142–143, 112 (2018).

    Article  Google Scholar 

  35. J.W. Yoon, F. Barlat, R.E. Dick, and M.E. Karabin, Int. J. Plast. 22, 174 (2006).

    Article  Google Scholar 

  36. M. Kumar and N.G. Ross, J. Mater. Process. Technol. 231, 189 (2016).

    Article  Google Scholar 

  37. T. Kuwabara, S. Ikeda, and K. Kuroda, J. Mater. Process. Technol. 80–81, 517 (1998).

    Article  Google Scholar 

  38. S. Kim, J. Lee, F. Barlat, and M.-G.M.G. Lee, J. Mater. Process. Technol. 213, 1929 (2013).

    Article  Google Scholar 

  39. J. Ha, M. Baral, and Y.P. Korkolis, Int. J. Solids Struct. 155, 123 (2018).

    Article  Google Scholar 

  40. ABAQUS, User’s Manual (2018) (Hibbit,Karlsson & Sorensen Inc,.USA., 2018)

  41. NUMISHEET, in 8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processing, edited by K. Chung, H. Huh, H.-N. Han, Y. H. Moon, and F. Barlat (Seoul, Korea, 2011)

  42. J.-Y. Lee, F. Barlat, and M.-G. Lee, Int. J. Plast. 71, 113 (2015).

    Article  Google Scholar 

  43. H.J. Bong, F. Barlat, M.G. Lee, and D.C. Ahn, Int. J. Mech. Sci. 64, 1 (2012).

    Article  Google Scholar 

  44. T. Rahmaan, P. Zhou, C. Butcher, and M.J. Worswick, EPJ Web Conf. 183, 02037 (2018).

    Article  Google Scholar 

  45. S. Entesari, A. Abdollah-zadeh, N. Habibi, and A. Mehri, J. Manuf. Process. 29, 74 (2017).

    Article  Google Scholar 

  46. M. Merklein and E. Affronti, Int. J. Mech. Sci. 138–139, 295 (2018).

    Google Scholar 

  47. X. Wang and J. Cao, Int. J. Mech. Sci. 42, 2369 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Research Resettlement Fund for the new faculty of Seoul National University. M.G. Lee appreciates the support. Also, J. Lee appreciate the supports by the Fundamental Research Program of the KIMS (PNK6000) and by the MOTIE & KIAT (No. P0010344). Special thanks are offered in particular to D. Yoo and S. J. Bae of KIMS for their help with conducting the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung-Gyu Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 312 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Bong, H.J., Kim, D. et al. Application of Combined W-Temper and Cold Forming Technology to High-Strength Aluminum Alloy Automotive Parts. JOM 71, 4393–4404 (2019). https://doi.org/10.1007/s11837-019-03779-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03779-z

Navigation