Skip to main content

In Situ X-ray Tomography and 3D X-ray Diffraction Measurements of Cemented Granular Materials

Abstract

In situ x-ray tomography and three-dimensional (3D) x-ray diffraction analysis have been combined to investigate the mechanical behavior of noncemented and lightly cemented quartz particles under quasistatic confined uniaxial compaction. The motivation for this study is to understand the particle-scale origin of the mechanical behavior of cemented particulate materials and to isolate what makes this behavior distinct from that of noncemented particulate materials. Tomography measurements elucidated the particle packing structure, contact fabric, cementation, and particle fragmentation, while 3D x-ray diffraction measurements provided insight into particle rotations and particle-resolved strain and stress tensors. The cemented sample was found to exhibit higher resistance to individual particle fragmentation and significantly restrained particle motion, compared with the noncemented sample, likely due to the cement bridges between particles. This reduction in particle fragmentation and motion may explain the significantly enhanced macroscopic stiffness of the cemented sample, as well as the strong alignment of intraparticle principal stresses with the macroscopic strain direction. These findings advance particle-scale understanding of cemented granular media and provide motivation for further research focused on developing fundamental understanding of the constitutive response of these materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    J. Duran, Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials (Berlin, Springer, 2012).

    Google Scholar 

  2. 2.

    D.M. Wood, Soil Behaviour and Critical State Soil Mechanics (Cambridge, Cambridge University Press, 1990).

    MATH  Google Scholar 

  3. 3.

    R.F. Gibson, Principles of Composite Material Mechanics (Boca Raton, CRC Press, 2011).

    Google Scholar 

  4. 4.

    H.M. Jaeger, S.R. Nagel, and R.P. Behringer, Rev. Mod. Phys. 68(4), 1259 (1996).

    Google Scholar 

  5. 5.

    K. Iwashita, and M. Oda, Mechanics of Granular Materials: An Introduction (Boca Raton, CRC Press, 1999).

    Google Scholar 

  6. 6.

    T.S. Majmudar, and R.P. Behringer, Nature 435(7045), 1079 (2005).

    Google Scholar 

  7. 7.

    T. Majmudar, M. Sperl, S. Luding, and R.P. Behringer, Phys. Rev. Lett. 98(5), 058001 (2007).

    Google Scholar 

  8. 8.

    M. Oda, S. Nemat-Nasser, and J. Konishi, Soils Found. 25(3), 85 (1985).

    Google Scholar 

  9. 9.

    B. Zhang, and R.A. Regueiro, Int. J. Solids Struct. 66, 151 (2015).

    Google Scholar 

  10. 10.

    M. Coop, and J. Atkinson, Geotechnique 43(1), 53 (1993).

    Google Scholar 

  11. 11.

    A. Tengattini, A. Das, G.D. Nguyen, G. Viggiani, S.A. Hall, and I. Einav, J. Mech. Phys. Solids 70, 281 (2014).

    MathSciNet  Google Scholar 

  12. 12.

    J. Fonseca, P. Bésuelle, and G. Viggiani, Géotech. Lett. 3, 78 (2013).

    Google Scholar 

  13. 13.

    B. Menéndez, W. Zhu, and T.F. Wong, J. Struct. Geol. 18(1), 1 (1996).

    Google Scholar 

  14. 14.

    Y. Wang, and S. Leung, J. Geotech. Geoenviron. Eng. 134(7), 992 (2008).

    Google Scholar 

  15. 15.

    A. Das, A. Tengattini, G.D. Nguyen, G. Viggiani, S.A. Hall, and I. Einav, J. Mech. Phys. Solids 70, 382 (2014).

    MathSciNet  Google Scholar 

  16. 16.

    M. Jiang, W. Zhang, Y. Sun, and S. Utili, Granul. Matter 15(1), 65 (2013).

    Google Scholar 

  17. 17.

    P.A. Cundall, and O.D. Strack, Geotechnique 29(1), 47 (1979).

    Google Scholar 

  18. 18.

    M. Jiang, S. Leroueil, and J. Konrad, Comput. Geotech. 31(6), 473 (2004).

    Google Scholar 

  19. 19.

    M. Zeghal, and U. El Shamy, Powder Technol. 184(2), 254 (2008).

    Google Scholar 

  20. 20.

    M. Mansouri, J.Y. Delenne, A. Seridi, and M. El Youssoufi, Powder Technol. 208(2), 532 (2011).

    Google Scholar 

  21. 21.

    N. Estrada, A. Lizcano, and A. Taboada, Phys. Rev. E 82(1), 011303 (2010).

    Google Scholar 

  22. 22.

    S. Luding, and F. Alonso-Marroquín, Granul. Matter 13(2), 109 (2011).

    Google Scholar 

  23. 23.

    J. Desrues, G. Viggiani, and P. Besuelle, Advances in X-ray Tomography for Geomaterials, vol. 118 (Hoboken, Wiley, 2010).

    Google Scholar 

  24. 24.

    S.A. Hall, M. Bornert, J. Desrues, Y. Pannier, N. Lenoir, G. Viggiani, and P. Bésuelle, Géotechnique 60(5), 315 (2010).

    Google Scholar 

  25. 25.

    K.A. Alshibli, S. Sture, N.C. Costes, M.L. Frank, M.R. Lankton, S.N. Batiste, and R.A. Swanson, Geotech. Test. J. 23(3), 274 (2000).

    Google Scholar 

  26. 26.

    A. Druckrey, K. Alshibli, and R. Al-Raoush, Géotechnique 68(2), 162 (2017).

    Google Scholar 

  27. 27.

    R. Hurley, S. Hall, and J. Wright, Proc. R. Soc. A 473(2207), 20170491 (2017).

    Google Scholar 

  28. 28.

    R. Hurley, J. Lind, D. Pagan, M. Homel, M. Akin, and E. Herbold, Phys. Rev. E 96(1), 012905 (2017).

    Google Scholar 

  29. 29.

    R. Hurley, J. Lind, D. Pagan, M. Akin, and E. Herbold, J. Mech. Phys. Solids 112, 273 (2018).

    Google Scholar 

  30. 30.

    C. Zhai, E. Herbold, S. Hall, and R. Hurley, J. Mech. Phys. Solidsin review (2019)

  31. 31.

    M. Cil, and K. Alshibli, Géotechn. Lett. 2(3), 161 (2012).

    Google Scholar 

  32. 32.

    M.B. Cil, K. Alshibli, P. Kenesei, and U. Lienert, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 324, 11 (2014)

  33. 33.

    M.B. Cil, K.A. Alshibli, and P. Kenesei, J. Geotech. Geoenviron. Eng. 143(9), 04017048 (2017).

    Google Scholar 

  34. 34.

    R. Hurley, S. Hall, J. Andrade, and J. Wright, Phys. Rev. Lett. 117(9), 098005 (2016).

    Google Scholar 

  35. 35.

    J. Oddershede, S. Schmidt, H.F. Poulsen, H.O. Sørensen, J. Wright, and W. Reimers, J. Appl. Crystallogr. 43(3), 539 (2010).

    Google Scholar 

  36. 36.

    T.F. Wong, and P. Baud, J. Struct. Geol. 44, 25 (2012).

    Google Scholar 

  37. 37.

    P.A. Shade, B. Blank, J.C. Schuren, T.J. Turner, P. Kenesei, K. Goetze, R.M. Suter, J.V. Bernier, S.F. Li, and J. Lind et al., Rev. Sci. Instrum. 86(9), 093902 (2015).

    Google Scholar 

  38. 38.

    M. Sperl, Granul. Matter 8(2), 59 (2006).

    Google Scholar 

  39. 39.

    K. Champley, Livermore tomography tools (ltt) technical manual. Tech. rep., LLNL Technical Report under development, (Dec 11, 2015) (2016).

  40. 40.

    N. Otsu, IEEE Trans. Syst. Man Cybern. 9(1), 62 (1979).

    Google Scholar 

  41. 41.

    M.A. Hashemi, G. Khaddour, B. François, T.J. Massart, and S. Salager, Acta Geotech. 9(5), 831 (2014).

    Google Scholar 

  42. 42.

    J. Bernier, N. Barton, U. Lienert, and M. Miller, J. Strain Anal. Eng. Des. 46(7), 527 (2011).

    Google Scholar 

  43. 43.

    R.C. Hurley, E.B. Herbold, and D.C. Pagan, J. Appl. Crystallogr. 51, 4 (2018).

    Google Scholar 

  44. 44.

    P. Heyliger, H. Ledbetter, and S. Kim, J. Acoust. Soc. Am. 114(2), 644 (2003).

    Google Scholar 

  45. 45.

    D. Bi, J. Zhang, B. Chakraborty, and R.P. Behringer, Nature 480(7377), 355 (2011).

    Google Scholar 

  46. 46.

    J. Shields, Adhesives Handbook (Amsterdam, Elsevier, 2013).

    Google Scholar 

  47. 47.

    E. Ando, Experimental investigation of microstructural changes in deforming granular media using x-ray tomography. Ph.D. thesis, Université de Grenoble (2013).

Download references

Acknowledgements

This work is based upon research conducted at the Cornell High Energy Synchrotron Source (CHESS), which is supported by the National Science Foundation and the National Institutes of Health/National Institute of General Medical Sciences under NSF Award DMR-133208. R.C.H. acknowledges generous support from Johns Hopkins University’s Whiting School of Engineering and the Hopkins Extreme Materials Institute (HEMI). We thank Dr. Ryan Crum of Lawrence Livermore National Laboratory for assistance in making the single-crystal angular quartz used in this study. We thank Prof. Tejas Murthy of the Indian Institute of Science for fruitful discussions on the mechanics of cemented granular materials.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. C. Hurley.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhai, C., Pagan, D.C. & Hurley, R.C. In Situ X-ray Tomography and 3D X-ray Diffraction Measurements of Cemented Granular Materials. JOM 72, 18–27 (2020). https://doi.org/10.1007/s11837-019-03774-4

Download citation