Skip to main content
Log in

Characterization of Microstructure and Texture Evolution in Ti664 Titanium Alloy After Multidirectional Forging and Annealing Treatments

  • Microstructure Evolution During Deformation Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In previous investigations, it was demonstrated that texturing of the microstructure in titanium alloy inevitably occurs after forging in one direction. In this work, the influence of multidirectional forging and annealing on the heterogeneity of the microstructure and crystallographic orientation of a new α + β titanium alloy (Ti-6Al-6Mo-4V) has been studied. A heterogeneous orientation distribution and morphology was observed in the microstructure, containing matrix β grains and α lamellae elongated along the deformation direction after multidirectional forging. Meanwhile, significant <100>//axial direction (AD) and <10\( \bar{1} \)0>//AD textures were formed because of the special deformation mode. After annealing at 825°C, a more homogeneous microstructure was obtained, but the annealing had a limited effect on the texture components. The same texture components were found because of the texture inheritance effect, and the variation of the texture intensity contributed to the grain dissolution and recrystallization effect during subsequent annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Nag, R. Banerjee, J. Stechschulte, and H.L. Fraser, J. Mater. Sci. Mater. Med. 16, 679 (2005).

    Google Scholar 

  2. T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, and N. Suzuki, Mater. Sci. Forum 426, 681 (2003).

    Google Scholar 

  3. M. Geetha, A.K. Singh, R. Asokamaniand, and A.K. Gogia, Prog. Mater Sci. 54, 397 (2009).

    Google Scholar 

  4. R.M. Poths, B.P. Wynne, W.M. Rainforth, J.H. Beynon, G. Angella, and S.L. Semiatin, Metall. Mater. Trans. A 35, 2993 (2004).

    Google Scholar 

  5. M.Q. Shi, Y. Takayama, M.A. Chun-An, H. Watanabe, and H. Inoue, Trans. Nonferrous Met. Soc. China 22, 2616 (2012).

    Google Scholar 

  6. S.L. Semiatin, A.L. Pilchak, K.T. Kinsel, and G.A. Sargent, Metall. Mater. Trans. A 44, 3852 (2013).

    Google Scholar 

  7. G. Obasi, J.Q.D. Fonseca, D. Rugg, and M. Preuss, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 576, 272 (2013).

    Google Scholar 

  8. T.S. Jun, D.E.J. Armstrong, and T.B. Britton, J. Alloys Compd. 672, 282 (2016).

    Google Scholar 

  9. H. Mishra, P. Ghosal, T.K. Nandy, and P.K. Sagar, Mater. Sci. Eng., A 399, 222 (2005).

    Google Scholar 

  10. D. He, J.C. Zhu, Z.H. Lai, Y. Liu, and X.W. Yang, Mater. Des. 46, 38 (2013).

    Google Scholar 

  11. X.G. Fan, H. Yang, Z.C. Sun, and D.W. Zhang, Mater. Sci. Eng., A 527, 5391 (2010).

    Google Scholar 

  12. D.X. Wen, Y.C. Lin, and Y. Zhou, Vacuum 141, 316 (2017).

    Google Scholar 

  13. A.M. Stapleton, S.L. Raghunathan, I. Bantounas, H.J. Stone, T.C. Lindley, and D. Dye, Acta Mater. 56, 6186 (2008).

    Google Scholar 

  14. V. Doquet and V.D. Greef, Int. J. Fatigue 38, 118 (2011).

    Google Scholar 

  15. M.G. Glavicic, B.B. Bartha, S.K. Jha, and C.J. Szczepanski, Mater. Sci. Eng., A 513, 325 (2009).

    Google Scholar 

  16. L. Germain, N. Gey, M. Humbert, P. Vo, M. Jahazi, and P. Bocher, Acta Mater. 56, 4298 (2008).

    Google Scholar 

  17. Z.B. Zhao, Q.J. Wang, J.R. Liu, and R. Yang, Acta Mater. 131, 305 (2017).

    Google Scholar 

  18. Z.B. Zhao, Q.J. Wang, Q.M. Hu, J.R. Liu, B.B. Yu, and R. Yang, Acta Mater. 126, 372 (2017).

    Google Scholar 

  19. H. Chen, F. Li, J. Liu, J. Li, X. Ma, and Q. Wan, Metall. Mater. Trans. A 48, 2396 (2017).

    Google Scholar 

  20. R. Bhagat, D. Dye, S.L. Raghunathan, R.J. Talling, D. Inman, B.K. Jackson, K.K. Rao, and R.J. Dashwood, Acta Mater. 58, 5057 (2010).

    Google Scholar 

  21. C. Poletti, L. Germain, F. Warchomicka, M. Dikovits, and S. Mitsche, Mater. Sci. Eng., A 651, 280 (2016).

    Google Scholar 

  22. G.Q. Wang, Z.B. Zhao, B.B. Yu, J.R. Liu, Q.J. Wang, J.H. Zhang, R. Yang, and J.W. Li, Acta Metall. Sin. Engl. Lett. 30, 499 (2017).

    Google Scholar 

  23. Z.B. Zhao, Q.J. Wang, J.R. Liu, and R. Yang, J. Alloys Compd. 712, 179 (2017).

    Google Scholar 

  24. M. Hölscher, D. Raabe, and K. Lücke, Acta Metall. Mater. 42, 879 (1994).

    Google Scholar 

  25. B. Sander and D. Raabe, Mater. Sci. Eng., A 479, 236 (2008).

    Google Scholar 

  26. P. Kumar, N.P. Gurao, A. Haldar, and S. Suwas, Metall. Mater. Trans. A 43, 2043 (2012).

    Google Scholar 

  27. S. Xu, L.S. Toth, C. Schuman, J.S. Lecomte, and M.R. Barnett, Acta Mater. 124, 59 (2017).

    Google Scholar 

  28. A. Fitzner, D.G.L. Prakash, J.Q.D. Fonseca, M. Thomas, S.Y. Zhang, J. Kelleher, P. Manuel, and M. Preuss, Acta Mater. 103, 341 (2016).

    Google Scholar 

  29. D. Jorge-Badiola, A. Iza-Mendia, and I. Gutiérrez, Mater. Sci. Eng., A 394, 445 (2005).

    Google Scholar 

  30. S. Zherebtsov, M. Murzinova, G. Salishchev, and S.L. Semiatin, Acta Mater. 59, 4138 (2011).

    Google Scholar 

  31. L. Li, J. Luo, J.J. Yan, and M.Q. Li, J. Alloys Compd. 622, 174 (2015).

    Google Scholar 

  32. L. Li, M.Q. Li, and J. Luo, Acta Mater. 94, 36 (2015).

    Google Scholar 

  33. Y. Chen, J. Li, B. Tang, H. Kou, X. Xue, and Y. Cui, J. Alloys Compd. 618, 146 (2015).

    Google Scholar 

  34. M. Hasegawa, M. Yamamoto, and H. Fukutomi, Acta Mater. 51, 3939 (2003).

    Google Scholar 

  35. R. Cottam, J. Robson, G. Lorimer, and B. Davis, Mater. Sci. Eng., A 485, 375 (2008).

    Google Scholar 

  36. S. Gourdet and F. Montheillet, Mater. Sci. Eng., A 283, 274 (2000).

    Google Scholar 

  37. A.M. Wusatowska-Sarnek, H. Miura, and T. Sakai, Sci. Eng. A 323, 177 (2002).

    Google Scholar 

  38. H. Beladi, P. Cizek, and P.D. Hodgson, Scr. Mater. 61, 528 (2009).

    Google Scholar 

  39. M.Q. Yan, Gas Heat 98, 033512 (2010).

    Google Scholar 

  40. V.D. Hiwarkar, S.K. Sahoo, K.V.M. Krishna, I. Samajdar, G.K. Dey, D. Srivastav, R. Tewari, S. Banarjee, and R.D. Doherty, Acta Mater. 57, 5812 (2009).

    Google Scholar 

  41. N. Moelans, B. Blanpain, and P. Wollants, Acta Mater. 55, 2173 (2007).

    Google Scholar 

  42. J. Ågren, Mater. Sci. Eng. 55, 135 (1982).

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Technologies R&D Program of China (Grant No. 2016YFB0701301), National Natural Science Foundation of China (Grant Nos. 51671218, 51501229), National Key Basic Research Program of China (973 Program) (Grant No. 2014CB644000), and State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China. Thanks are due to Qian Song of Central South University for her support with English writing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ligang Zhang or Libin Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, J., Wang, Z., Zheng, L. et al. Characterization of Microstructure and Texture Evolution in Ti664 Titanium Alloy After Multidirectional Forging and Annealing Treatments. JOM 71, 4687–4695 (2019). https://doi.org/10.1007/s11837-019-03772-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03772-6

Navigation