Skip to main content
Log in

Interpretation of Impedance Spectra of Solid Oxide Fuel Cells: L-Curve Criterion for Determination of Regularization Parameter in Distribution Function of Relaxation Times Technique

  • Solid Oxide Fuel Cells: Recent Scientific and Technological Advancements
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The distribution function of the relaxation times (DRT) technique is a powerful tool for the interpretation of impedance spectra of solid oxide fuel cells (SOFCs) because it enables direct identification of rate-limiting processes through mathematical calculations. Selection of an appropriate regularization parameter (λreg) is critical for obtaining meaningful deconvolution solutions in DRT analysis. Herein, we introduce an L-curve criterion as a reliable graphical tool for determination of the λreg value. In a parametric plot of log(solution norm) versus log(misfit norm), the λreg value at the corner of the L curve provides an optimum balance between the regularization error and perturbation error. In a case study on La0.6Sr0.4CoO3−δ-based cathodes, the DRT technique guided by the L-curve criterion enabled identification of rate-limiting processes and clarification of reaction pathways. The analytical methodology presented in this article provides guidelines for the effective use of the DRT technique for the impedance analysis of SOFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.C. Singhal, Solid State Ionics 135, 305 (2000).

    Article  Google Scholar 

  2. S. McIntosh and R.J. Gorte, Chem. Rev. 104, 4845 (2004).

    Article  Google Scholar 

  3. S.M. Haile, Acta Mater. 51, 5981 (2003).

    Article  Google Scholar 

  4. G.M. Rupp, A.K. Opitz, A. Nenning, A. Limbeck, and J. Fleig, Nat. Mater. 16, 640 (2017).

    Article  Google Scholar 

  5. J.J. Kim, S.R. Bishop, D. Chen, and H.L. Tuller, Chem. Mat. 29, 1999 (2017).

    Article  Google Scholar 

  6. C. Nicollet, A. Flura, V. Vibhu, A. Rougier, J.M. Bassat, and J.C. Grenier, J. Power Sources 294, 473 (2015).

    Article  Google Scholar 

  7. R. Antunes, J. Jewulski, and T. Golec, J. Fuel Cell Sci. Technol. 11, 7 (2014).

    Google Scholar 

  8. B. Liu, H. Muroyama, T. Matsui, K. Tomida, T. Kabata, and K. Eguchi, J. Electrochem. Soc. 157, B1858 (2010).

    Article  Google Scholar 

  9. H. Sumi, T. Yamaguchi, K. Hamamoto, T. Suzuki, Y. Fujishiro, T. Matsui, and K. Eguchi, Electrochim. Acta 67, 159 (2012).

    Article  Google Scholar 

  10. H. Schichlein, A.C. Müller, M. Voigts, A. Krügel, and E. Ivers-Tiffée, J. Appl. Electrochem. 32, 875 (2002).

    Article  Google Scholar 

  11. G. Jeschke and S. Schlick, Phys. Chem. Chem. Phys. 8, 4095 (2006).

    Article  Google Scholar 

  12. G. Jeschke, G. Panek, A. Godt, A. Bender, and H. Paulsen, Appl. Magn. Reson. 26, 223 (2004).

    Article  Google Scholar 

  13. M.K. Bowman, A.G. Maryasov, N. Kim, and V.J. DeRose, Appl. Magn. Reson. 26, 23 (2004).

    Article  Google Scholar 

  14. M. Saccoccio, T.H. Wan, C. Chen, and F. Ciucci, Electrochim. Acta 147, 470 (2014).

    Article  Google Scholar 

  15. J.P. Tomba, M. de la Paz Miguel, and C.J. Perez, J. Raman Spectrosc. 42, 1330 (2011).

    Article  Google Scholar 

  16. T.M. Correia, A.P. Gibson, M. Schweiger, and J.C. Hebden, J. Biomed. Opt. 14, 11 (2009).

    Google Scholar 

  17. J. Weese, Comput. Phys. Commun. 69, 99 (1992).

    Article  Google Scholar 

  18. Y. Takeda, R. Kanno, M. Noda, Y. Tomida, and O. Yamamoto, J. Electrochem. Soc. 134, 2656 (1987).

    Article  Google Scholar 

  19. E. Siebert, A. Hammouche, and M. Kleitz, Electrochim. Acta 40, 1741 (1995).

    Article  Google Scholar 

  20. J.E. Bauerle, J. Phys. Chem. Solids 30, 2657 (1969).

    Article  Google Scholar 

  21. V. Sonn, A. Leonide, and E. Ivers-Tiffee, J. Electrochem. Soc. 155, B675 (2008).

    Article  Google Scholar 

  22. A. Leonide, B. Ruger, A. Weber, W.A. Meulenberg, and E. Ivers-Tiffee, J. Electrochem. Soc. 157, B234 (2010).

    Article  Google Scholar 

  23. Y.W. Chiang, P.P. Borbat, and J.H. Freed, J. Magn. Reson. 172, 279 (2005).

    Article  Google Scholar 

  24. P.C. Hansen, SIAM Rev. 34, 561 (1992).

    Article  MathSciNet  Google Scholar 

  25. D. Klotz, M. Schonleber, J.P. Schmidt, and E. Ivers-Tiffee, Electrochim. Acta 56, 8763 (2011).

    Article  Google Scholar 

  26. B.A. Boukamp, Electrochim. Acta 154, 35 (2015).

    Article  Google Scholar 

  27. S.-W. Baek, J. Bae, and Y.-S. Yoo, J. Power Sources 193, 431 (2009).

    Article  Google Scholar 

  28. H.N. Im, M.B. Choi, B. Singh, D.K. Lim, and S.J. Song, J. Electrochem. Soc. 162, F728 (2015).

    Article  Google Scholar 

  29. A. Grimaud, F. Mauvy, J.M. Bassat, S. Fourcade, L. Rocheron, M. Marrony, and J.C. Grenier, J. Electrochem. Soc. 159, B683 (2012).

    Article  Google Scholar 

  30. M.J. Escudero, A. Aguadero, J.A. Alonso, and L. Daza, J. Electroanal. Chem. 611, 107 (2007).

    Article  Google Scholar 

  31. B. Philippeau, F. Mauvy, C. Nicollet, S. Fourcade, and J.C. Grenier, J. Solid State Electrochem. 19, 871 (2014).

    Article  Google Scholar 

  32. V. Dusastre and J.A. Kilner, Solid State Ionics 126, 163 (1999).

    Article  Google Scholar 

  33. F.S. Baumann, J. Fleig, H.-U. Habermeier, and J. Maier, Solid State Ionics 177, 1071 (2006).

    Article  Google Scholar 

  34. R. Amin, B. Kenney, and K. Karan, J. Electrochem. Soc. 158, B1076 (2011).

    Article  Google Scholar 

  35. Y.L. Yang, C.L. Chen, S.Y. Chen, C.W. Chu, and A.J. Jacobson, J. Electrochem. Soc. 147, 4001 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Technology Development Program to Solve Climate Changes through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT (NRF-2016M1A2A2940148) and the institutional research program of Korea Institute of Science and Technology (KIST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Joong Yoon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, MB., Shin, J., Ji, HI. et al. Interpretation of Impedance Spectra of Solid Oxide Fuel Cells: L-Curve Criterion for Determination of Regularization Parameter in Distribution Function of Relaxation Times Technique. JOM 71, 3825–3834 (2019). https://doi.org/10.1007/s11837-019-03762-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03762-8

Navigation