Microstructure and Mechanical Properties of Pure Copper Wire Produced by Shear Assisted Processing and Extrusion


The shear assisted processing and extrusion (ShAPE) process can consolidate powdered materials and simultaneously extrude wire or tube with improved properties. We successfully produced copper wire extrusions from powder and solid materials for the first time. The extrusion pressure in the ShAPE process is at least ten times less than that required for conventional extrusion. We used optical microscopy to inspect and validate the integrity of extrudates, revealing that the microstructure was refined and dynamically recrystallized to equiaxial grains. Compared with annealed copper wire, ShAPE-processed wire showed 80% higher yield strength, 15% higher ultimate tensile strength, and 20% higher ductility. These results were correlated with refined grain size and substructuring observed via electron backscatter diffraction analysis and transmission electron microscopy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    X. Li, W. Tang, A. Reynolds, W. Tayon, and C. Brice, J. Mater. Process. Technol. 229, 191–198 (2016).

    Article  Google Scholar 

  2. 2.

    W. Tang and A.P. Reynolds, J. Mater. Process. Technol. 210, 2231–2237 (2010).

    Article  Google Scholar 

  3. 3.

    X. Li, D. Baffari, and A. Reynolds, Int. J. Adv. Manuf. Technol. 94, 2031–2042 (2018).

    Article  Google Scholar 

  4. 4.

    J.Z. Gronostajski, J.W. Kaczmar, H. Marciniak, and A. Matuszak, J. Mater. Process. Technol. 64, 149–156 (1997).

    Article  Google Scholar 

  5. 5.

    R.A. Behnagh, R. Mahdavinejad, A. Yavari, M. Abdollahi, and M. Narvan, Metall. Mater. Trans. B 45, 1484–1489 (2014).

    Article  Google Scholar 

  6. 6.

    D. Baffari, A.P. Reynolds, X. Li, and L. Fratini, Bonding prediction in friction stir consolidation of aluminum alloys: a preliminary study, 2018.

  7. 7.

    D. Baffari, G. Buffa, and L. Fratini, Influence of Process Parameters on the Product Integrity in Friction Stir Extrusion of Magnesium Alloys, Key Engineering Materials (Zürich: Trans Tech Publ, 2016), pp. 39–48.

    Google Scholar 

  8. 8.

    G. Buffa, D. Campanella, L. Fratini, and F. Micari, Int. J. Mater. Form. 9, 613–618 (2016).

    Article  Google Scholar 

  9. 9.

    D. Baffari, G. Buffa, D. Campanella, L. Fratini, and A.P. Reynolds, J. Manuf. Process. 29, 41–49 (2017).

    Article  Google Scholar 

  10. 10.

    D. Baffari, G. Buffa, and L. Fratini, J. Mater. Process. Technol. 247, 1–10 (2017).

    Article  Google Scholar 

  11. 11.

    D. Catalini, D. Kaoumi, A.P. Reynolds, and G.J. Grant, J. Nucl. Mater. 442, S112–S118 (2013).

    Article  Google Scholar 

  12. 12.

    D. Catalini, D. Kaoumi, A.P. Reynolds, and G.J. Grant, Metall. Mater. Trans. A 46, 4730–4739 (2015).

    Article  Google Scholar 

  13. 13.

    X. Jiang, S.A. Whalen, J.T. Darsell, S. Mathaudhu, and N.R. Overman, Mater. Charact. 123, 166–172 (2017).

    Article  Google Scholar 

  14. 14.

    S. Whalen, S. Jana, D. Catalini, N. Overman, and J. Sharp, J. Electron. Mater. 45, 3390–3399 (2016).

    Article  Google Scholar 

  15. 15.

    M. Sharifzadeh, M. Ali Ansari, M. Narvan, R.A. Behnagh, A. Araee, and M.K.B. Givi, Trans. Nonferrous Met. Soc. China 25, 1847–1855 (2015).

    Article  Google Scholar 

  16. 16.

    N.R. Overman, S.A. Whalen, M.E. Bowden, M.J. Olszta, K. Kruska, T. Clark, E.L. Stevens, J.T. Darsell, V.V. Joshi, X. Jiang, K.F. Mattlin, and S.N. Mathaudhu, Mater. Sci. Eng. A 701, 56–68 (2017).

    Article  Google Scholar 

  17. 17.

    I. Dinaharan, R. Sathiskumar, S.J. Vijay, and N. Murugan, Proc. Mater. Sci. 5, 1502–1508 (2014).

    Article  Google Scholar 

  18. 18.

    H. Jafarzadeh, A. Babaei, and F. Esmaeili-Goldarag, Arch. Civ. Mech. Eng. 18, 1374–1385 (2018).

    Article  Google Scholar 

  19. 19.

    A. Standard, Annual book of ASTM standards 3 (2004) 57–72.

  20. 20.

    N. Abbas, X. Deng, X. Li, and A.P. Reynolds, Int. J. Mech. Sci. 134, 436–444 (2017).

    Article  Google Scholar 

  21. 21.

    K. Serope, R. Steven, Publication date (1991) 09-2002.

  22. 22.

    ASTM B152 Standard Specification for Copper Sheet, Strip, Plate, and Rolled Bar, ASTM International, West Conshohocken, 2013.

  23. 23.

    N. Lugo, N. Llorca, J. Cabrera, and Z. Horita, Mater. Sci. Eng. A 477, 366–371 (2008).

    Article  Google Scholar 

  24. 24.

    A.P. Zhilyaev, I. Shakhova, A. Belyakov, R. Kaibyshev, and T.G. Langdon, J. Mater. Sci. 49, 2270–2278 (2014).

    Article  Google Scholar 

  25. 25.

    M. Lipińska, L. Olejnik, and M. Lewandowska, J. Mater. Sci. 53, 3862–3875 (2018).

    Article  Google Scholar 

  26. 26.

    K. Jata and S. Semiatin, Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys, Air Force Research Lab Wright-Patterson AFB OH Materials and Manufacturing, 2000.

  27. 27.

    Y.H. Zhao, J.F. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, and Y.T. Zhu, Adv. Mater. 18, 2949–2953 (2006).

    Article  Google Scholar 

  28. 28.

    F. Salimyanfard, M.R. Toroghinejad, F. Ashrafizadeh, and M. Jafari, Mater. Sci. Eng. A 528, 5348–5355 (2011).

    Article  Google Scholar 

  29. 29.

    P. Prangnell, J.R. Bowen, and P. Apps, Mater. Sci. Eng. A 375, 178–185 (2004).

    Article  Google Scholar 

  30. 30.

    A. Mishra, V. Richard, F. Gregori, R. Asaro, and M. Meyers, Mater. Sci. Eng. A 410, 290–298 (2005).

    Article  Google Scholar 

  31. 31.

    W. Skrotzki, N. Scheerbaum, C.-G. Oertel, R. Arruffat-Massion, S. Suwas, and L.S. Toth, Acta Mater. 55, 2013–2024 (2007).

    Article  Google Scholar 

Download references


The authors thank the U.S. Department of Energy Office of Technology Transitions and Vehicles Technologies Office (DOE/OTT and VTO) for supporting this Technology Commercialization Fund (TCF) work. The authors are grateful for the dedication of Jens Darsell and Md. Reza-E-Rabby in assisting with extrusions on the machine, and Anthony Guzman for excellent preparation for metallographic analysis. The Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute for the United States Department of Energy under contract DE-AC06-76LO1830.

Author information



Corresponding author

Correspondence to Xiao Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Overman, N., Roosendaal, T. et al. Microstructure and Mechanical Properties of Pure Copper Wire Produced by Shear Assisted Processing and Extrusion. JOM 71, 4799–4805 (2019). https://doi.org/10.1007/s11837-019-03752-w

Download citation