Skip to main content
Log in

Atomistic Computational Analysis of the Loading Orientation-Dependent Phase Transformation in Graphite under Compression

  • Crystal Orientation Dependence of Mechanical and Thermal Properties in Functional Nanomaterials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this work, we perform atomistic simulations to study the phase transformations (PT) in graphite under compression. Our major findings are: (1) when the compression is parallel to the basal plane, graphite layers buckle, kink bands form, and then the diamond nucleates at the intersection of kink bands; the initially introduced dislocations block the graphite layer slippage and promote the graphite-to-diamond PT; (2) instead, when the sample is compressed normal to the basal plane, no buckling is observed, and in this situation, the pre-existing dislocations delay the structure change; and (3) the PT is found to be controlled by local stresses from which a criterion can be formulated for detecting the graphite lattice instability. Despite the limited length scales in our atomistic models, the above results may support the search for new routes to fabricate artificial diamonds at a significantly less cost than that required by traditional techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Bundy, J. Chem. Phys. 38, 631 (1963).

    Article  Google Scholar 

  2. R.M. Hazen, The diamond makers (Cambridge: Cambridge University Press, 1999).

    Google Scholar 

  3. H.T. Hall, Science 128, 445 (1958).

    Article  Google Scholar 

  4. M.G. Loshak and L.I. Alexandrova, Int. J. Refract. Met. Hard Mater. 19, 5 (2001).

    Article  Google Scholar 

  5. Y. Gao, Y. Ma, Q. An, V. Levitas, Y. Zhang, B. Feng, J. Chaudhuri, and W.A. Goddard, Carbon 146, 364 (2019).

    Article  Google Scholar 

  6. K. Edalati, T. Daio, Y. Ikoma, M. Arita, and Z. Horita, Appl. Phys. Lett. 103, 034108 (2013).

    Article  Google Scholar 

  7. W.L. Mao, H. Mao, P.J. Eng, T.P. Trainor, M. Newville, C. Kao, D.L. Heinz, J. Shu, Y. Meng, and R.J. Hemley, Science 302, 425 (2003).

    Article  Google Scholar 

  8. Q. Li, Y. Ma, A.R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H.-K. Mao, and G. Zou, Phys. Rev. Lett. 102, 175506 (2009).

    Article  Google Scholar 

  9. K. Umemoto, R.M. Wentzcovitch, S. Saito, and T. Miyake, Phys. Rev. Lett. 104, 125504 (2010).

    Article  Google Scholar 

  10. J.-T. Wang, C. Chen, and Y. Kawazoe, Phys. Rev. Lett. 106, 075501 (2011).

    Article  Google Scholar 

  11. H. Niu, X.-Q. Chen, S. Wang, D. Li, W.L. Mao, and Y. Li, Phys. Rev. Lett. 108, 135501 (2012).

    Article  Google Scholar 

  12. J.-T. Wang, C. Chen, and Y. Kawazoe, J. Chem. Phys. 137, 024502 (2012).

    Article  Google Scholar 

  13. M. Akaishi, H. Kanda, and S. Yamaoka, Jpn. J. Appl. Phys. 29, L1172 (1990).

    Article  Google Scholar 

  14. M. Akaishi, H. Kanda, and S. Yamaoka, J. Cryst. Growth 104, 578 (1990).

    Article  Google Scholar 

  15. B. Feng, V.I. Levitas, and Y. Ma, J. Appl. Phys. 115, 163509 (2014).

    Article  Google Scholar 

  16. B. Feng and V.I. Levitas, J. Appl. Phys. 114, 213514 (2013).

    Article  Google Scholar 

  17. V.I. Levitas and O.M. Zarechnyy, Phys. Rev. B 82, 174123 (2010).

    Article  Google Scholar 

  18. B. Feng, V.I. Levitas, and W. Li, Int. J. Plast 113, 236 (2019).

    Article  Google Scholar 

  19. V.I. Levitas and M. Javanbakht, Nanoscale 6, 162 (2014).

    Article  Google Scholar 

  20. L.-Q. Chen, Annu. Rev. Mater. Res. 32, 113 (2002).

    Article  Google Scholar 

  21. J.A. Warren and W.J. Boettinger, Acta Metall. Mater. 43, 689 (1995).

    Article  Google Scholar 

  22. M.A. Zaeem, N. Zhang, and M. Mamivand, Comput. Mater. Sci. 160, 120 (2019).

    Article  Google Scholar 

  23. S. Xu, J. R. Mianroodi, A. Hunter, I. J. Beyerlein, and B. Svendsen, Philos. Mag. 1 (2019).

  24. J. Mayeur, I. Beyerlein, C. Bronkhorst, and H. Mourad, Int. J. Plast 65, 206 (2015).

    Article  Google Scholar 

  25. J.R. Mayeur, D.L. McDowell, and D.J. Bammann, J. Mech. Phys. Solids 59, 398 (2011).

    Article  MathSciNet  Google Scholar 

  26. M. Anahid, M.K. Samal, and S. Ghosh, J. Mech. Phys. Solids 59, 2157 (2011).

    Article  Google Scholar 

  27. Y. Hong, N. Zhang, and L. Xiong, J. Micromechanics Mol. Phys. 1, 1640007 (2016).

    Article  Google Scholar 

  28. N. Zhang et al., J. Appl. Phys. 109, 063534 (2011).

    Article  Google Scholar 

  29. N. Zhang and M.A. Zaeem, Acta Mater. 120, 337 (2016).

    Article  Google Scholar 

  30. V.I. Levitas, H. Chen, and L. Xiong, Phys. Rev. B 96, 054118 (2017).

    Article  Google Scholar 

  31. V.I. Levitas, H. Chen, and L. Xiong, Phys. Rev. Lett. 118, 025701 (2017).

    Article  Google Scholar 

  32. H. Chen, V. Levitas, and L. Xiong, Comput. Mater. Sci. 157, 132 (2019).

    Article  Google Scholar 

  33. M. Barsoum, X. Zhao, S. Shanazarov, A. Romanchuk, S. Koumlis, S. Pagano, L. Lamberson, and G. Tucker, Phys. Rev. Mater. 3, 013602 (2019).

    Article  Google Scholar 

  34. D. Freiberg, M. Barsoum, and G. Tucker, Phys. Rev. Mater. 2, 053602 (2018).

    Article  Google Scholar 

  35. M. Barsoum and G. Tucker, Scr. Mater. 139, 166 (2017).

    Article  Google Scholar 

  36. R.Z. Khaliullin, H. Eshet, T.D. Kühne, J. Behler, and M. Parrinello, Nat. Mater. 10, 693 (2011).

    Article  Google Scholar 

  37. H. Xie, F. Yin, T. Yu, J.-T. Wang, and C. Liang, Sci. Rep. 4, 5930 (2014).

    Article  Google Scholar 

  38. M. Barsoum, A. Murugaiah, S. Kalidindi, T. Zhen, and Y. Gogotsi, Carbon 42, 1435 (2004).

    Article  Google Scholar 

  39. J. Gruber, A.C. Lang, J. Griggs, M.L. Taheri, G.J. Tucker, and M.W. Barsoum, Sci. Rep. 6, 33451 (2016).

    Article  Google Scholar 

  40. S. Plimpton, 42 (n.d.).

  41. Y. Chen and E.P.L. Europhys, Lett. 116, 34003 (2016).

    Google Scholar 

  42. Y. Chen and A. Diaz, Phys. Rev. E 98, 052113 (2018).

    Article  Google Scholar 

  43. J. Rigelesaiyin, A. Diaz, W. Li, L. Xiong, and Y. Chen, Proc. R. Soc. Math. Phys. Eng. Sci. 474, 20180155 (2018).

    Article  Google Scholar 

  44. Y. Chen and A. Diaz, Phys. Rev. E 94, 053309 (2016).

    Article  Google Scholar 

  45. L.M. Ghiringhelli, J.H. Los, E.J. Meijer, A. Fasolino, and D. Frenkel, Phys. Rev. Lett. 94, 145701 (2005).

    Article  Google Scholar 

  46. L. Pastewka, A. Klemenz, P. Gumbsch, and M. Moseler, Phys. Rev. B 87, 205410 (2013).

    Article  Google Scholar 

  47. J. Titantah and D. Lamoen, Carbon 43, 1311 (2005).

    Article  Google Scholar 

  48. J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988).

    Article  Google Scholar 

  49. M.J. López, I. Cabria, and J.A. Alonso, J. Chem. Phys. 135, 104706 (2011).

    Article  Google Scholar 

  50. G.-D. Lee, C. Wang, E. Yoon, N.-M. Hwang, D.-Y. Kim, and K. Ho, Phys. Rev. Lett. 95, 205501 (2005).

    Article  Google Scholar 

  51. P. Thrower and R. Mayer, Phys. Status Solidi A 47, 11 (1978).

    Article  Google Scholar 

  52. T. Liang, T.-R. Shan, Y.-T. Cheng, B.D. Devine, M. Noordhoek, Y. Li, Z. Lu, S.R. Phillpot, and S.B. Sinnott, Mater. Sci. Eng. R Rep. 74, 255 (2013).

    Article  Google Scholar 

  53. S.G. Srinivasan, A.C. Van Duin, and P. Ganesh, J. Phys. Chem. A 119, 571 (2015).

    Article  Google Scholar 

  54. M.L. Falk and J.S. Langer, Phys. Rev. E 57, 7192 (1998).

    Article  Google Scholar 

  55. F. Shimizu, S. Ogata, and J. Li, Mater. Trans. 48, 2923 (2007).

    Article  Google Scholar 

  56. A.C. Van Duin, S. Dasgupta, F. Lorant, and W.A. Goddard, J. Phys. Chem. A 105, 9396 (2001).

    Article  Google Scholar 

  57. A. Karma, Phys. Rev. Lett. 87, 115701 (2001).

    Article  Google Scholar 

  58. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).

    Article  Google Scholar 

  59. E. Maras, O. Trushin, A. Stukowski, T. Ala-Nissila, and H. Jonsson, Comput. Phys. Commun. 205, 13 (2016).

    Article  Google Scholar 

  60. Y.X. Zhao and I.L. Spain, Phys. Rev. B 40, 993 (1989).

    Article  Google Scholar 

  61. L. Xiong, G. Tucker, D.L. McDowell, and Y. Chen, J. Mech. Phys. Solids 59, 160 (2011).

    Article  Google Scholar 

  62. L. Xiong, Q. Deng, G. Tucker, D.L. McDowell, and Y. Chen, Acta Mater. 60, 899 (2012).

    Article  Google Scholar 

  63. L. Xiong, D.L. McDowell, and Y. Chen, Scr. Mater. 67, 633 (2012).

    Article  Google Scholar 

  64. H. Chen, S. Xu, W. Li, R. Ji, T. Phan, and L. Xiong, Comput. Mater. Sci. 144, 1 (2018).

    Article  Google Scholar 

  65. L. Xiong and Y. Chen, Model. Simul. Mater. Sci. Eng. 17, 035002 (2009).

    Article  Google Scholar 

  66. L. Xiong, D.L. McDowell, and Y. Chen, Int. J. Plast 55, 268 (2014).

    Article  Google Scholar 

  67. L. Xiong, X. Chen, N. Zhang, D.L. McDowell, and Y. Chen, Arch. Appl. Mech. 84, 1665 (2014).

    Article  Google Scholar 

  68. S. Xu, L. Xiong, Y. Chen, and D.L. McDowell, Acta Mater. 122, 412 (2017).

    Article  Google Scholar 

  69. S. Xu, L. Xiong, Y. Chen, and D.L. McDowell, J. Mech. Phys. Solids 96, 460 (2016).

    Article  Google Scholar 

  70. X. Chen, W. Li, L. Xiong, Y. Li, S. Yang, Z. Zheng, D.L. McDowell, and Y. Chen, Acta Mater. 136, 355 (2017).

    Article  Google Scholar 

  71. Y. Chen, J. Chem. Phys. 130, 134706 (2009).

    Article  Google Scholar 

  72. J.G. Kirkwood, J. Chem. Phys. 14, 180 (1946).

    Article  Google Scholar 

  73. J.G. Kirkwood, J. Chem. Phys. 15, 72 (1947).

    Article  Google Scholar 

  74. R.J. Bearman and J.G. Kirkwood, J. Chem. Phys. 28, 136 (1958).

    Article  MathSciNet  Google Scholar 

  75. J. Irving and J.G. Kirkwood, J. Chem. Phys. 18, 817 (1950).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of NSF (Grant No. CMMI-1536925 and CMMI-1824840) and the Extreme Science and Engineering Discovery Environment (TG-MSS170003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Xiong, L. Atomistic Computational Analysis of the Loading Orientation-Dependent Phase Transformation in Graphite under Compression. JOM 71, 3892–3902 (2019). https://doi.org/10.1007/s11837-019-03726-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03726-y

Navigation