Skip to main content
Log in

Influence of Temperature and Strain Rate on Microstructural Evolution During Hot Compression of Ti-45Al-xNb-0.2C-0.2B Titanium Aluminide Alloys

  • Mesoscale Materials Science: Experiments and Modeling
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The hot deformation response of third-generation titanium aluminides with compositions Ti-45Al-5Nb-0.2B-0.2C and Ti-45Al-10Nb-0.2B-0.2C (hereafter referred to as Ti-45-5 and Ti-45-10, respectively) has been investigated through isothermal compression tests. The tests have been carried out in the \( (\alpha_{2} + \gamma ) \) and \( (\alpha + \gamma ) \) phase regions for both alloys. The flow response, kinetics and microstructural evolution during hot deformation have been analysed in detail, and the outcome of the investigation has been used to predict the processing window for the two alloys. The optimum processing domain for the Ti-45-10 alloy is situated 50°C higher than that of the Ti-45-5 alloy. The post-mortem analyses of the microstructures revealed that deformation in the \( (\alpha_{2} + \gamma ) \) phase field leads to dynamic recrystallisation of all the phases resulting in a distribution of very fine grains. Microstructural features of both alloys depict kinking and breaking of the lamellae for the equivalent temperatures. The higher strength of the Ti-45-10 alloy has been attributed to shifting of the order-disorder transition toward the higher temperature side. In the \( (\alpha + \gamma ) \) region, the fraction of \( \alpha \) phase increases more for the Ti-45-10 alloy compared with the Ti-45-5 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.J.E. Glenny, J.E. Northwood, and B. Smith, Int. Mater. Rev. 20, 1 (1975).

    Article  Google Scholar 

  2. C. Estrada, Sci. Tech. Año XIII 22, 297 (2007).

    Google Scholar 

  3. S. Zghal, S. Naka, and A. Couret, Acta Mater. 45, 3005 (1997).

    Article  Google Scholar 

  4. N.A. Nochovnaya, P.V. Panin, A.S. Kochetkov, and K.A. Bokov, Met. Sci. Heat Treat. 56, 364 (2014).

    Article  Google Scholar 

  5. R. Gerling, F.P. Schimansky, A. Stark, A. Bartels, H. Kestler, L. Cha, C. Scheu, and H. Clemens, Intermetallics 16, 689 (2008).

    Article  Google Scholar 

  6. A. Lasalmonie, Intermetallics 14, 1123 (2006).

    Article  Google Scholar 

  7. H. Nickel, N. Zheng, A. Elschner, and W.J. Quadakkers, Mikrochim. Acta 39, 23 (1995).

    Article  Google Scholar 

  8. C.J. Zhan, T.-H. Yu, and C.-H. Koo, Mater. Trans. 47, 2588 (2006).

    Article  Google Scholar 

  9. D.B. Lee, K.B. Park, and M. Nakamura, Met. Mater. Int. 8, 319 (2002).

    Article  Google Scholar 

  10. M. Oehring, A. Stark, J.D.H. Paul, T. Lippmann, and F. Pyczak, Mater. Sci. Forum 706–709, 1089 (2012).

    Article  Google Scholar 

  11. B. Liu, Y. Liu, Y.P. Li, W. Zhang, and A. Chiba, Intermetallics 19, 1184 (2011).

    Article  Google Scholar 

  12. D. Hu, C. Yang, A. Huang, M. Dixon, and U. Hecht, Intermetallics 23, 49–56 (2012).

    Article  Google Scholar 

  13. A. Donchev, E. Richter, M. Schütze, and R. Yankov, Intermetallics 14, 1168 (2006).

    Article  Google Scholar 

  14. Z.W. Huang and D.G. Zhu, Intermetallics 16, 156 (2008).

    Article  Google Scholar 

  15. W.F. Cui, C.M. Liu, V. Bauer, and H.J. Christ, Intermetallics 15, 675 (2007).

    Article  Google Scholar 

  16. V. Bauer and H.J. Christ, Intermetallics 17, 370 (2009).

    Article  Google Scholar 

  17. D. Hu, Intermetallics 10, 851 (2002).

    Article  Google Scholar 

  18. Tazuddin, K. Biswas, and N.P. Gurao, Mater. Sci. Eng. A 657, 224 (2016).

    Article  Google Scholar 

  19. J. Liu, Q.D. Luan, X.G. Wang, and L.M. Peng, Mater. Sci. Eng., A 527, 7658 (2010).

    Article  Google Scholar 

  20. U. Hecht, V. Witusiewicz, A. Drevermann, and J. Zollinger, Intermetallics 16, 969 (2008).

    Article  Google Scholar 

  21. S. Roy, A. Sarkar, and S. Suwas, Mater. Sci. Eng., A 528, 449 (2010).

    Article  Google Scholar 

  22. S. Roy, S. Suwas, S. Tamirisakandala, R. Srinivasan, and D. B. Miracle, TMS 2009 - 138th Annu. Meet. Exhib. Febr. 15, 2009 - Febr. 19, 2009 3, 63 (2009).

  23. D. Hu, A.J. Huang, D. Novovic, and X. Wu, Intermetallics 14, 818 (2006).

    Article  Google Scholar 

  24. H. Gabrisch, A. Stark, F.P. Schimansky, L. Wang, N. Schell, U. Lorenz, and F. Pyczak, Intermetallics 33, 44 (2013).

    Article  Google Scholar 

  25. E. Schwaighofer, B. Rashkova, H. Clemens, A. Stark, and S. Mayer, Intermetallics 46, 173 (2014).

    Article  Google Scholar 

  26. C. Scheu, E. Stergar, M. Schober, L. Cha, H. Clemens, A. Bartels, F.P. Schimansky, and A. Cerezo, Acta Mater. 57, 1504 (2009).

    Article  Google Scholar 

  27. D. Daloz, U. Hecht, J. Zollinger, H. Combeau, A. Hazotte, and M. Založnik, Intermetallics 19, 749 (2011).

    Article  Google Scholar 

  28. J. Barbosa, C.S. Ribeiro, and A.C. Monteiro, Intermetallics 15, 945 (2007).

    Article  Google Scholar 

  29. S. Bolz, M. Oehring, J. Lindemann, F. Pyczak, J. Paul, A. Stark, T. Lippmann, S. Schrüfer, D. Roth-Fagaraseanu, A. Schreyer, and S. Weiß, Intermetallics 58, 71 (2015).

    Article  Google Scholar 

  30. S.L. Semiatin, V. Seetharaman, and V.K. Jain, Metall. Mater. Trans. A 25, 2753 (1994).

    Article  Google Scholar 

  31. F. Appel, M. Oehring, J.D.H. Paul, C. Klinkenberg, and T. Carneiro, Intermetallics 12, 791 (2004).

    Article  Google Scholar 

  32. V. Seetharaman and S.L. Semiatin, Metall. Mater. Trans. A 28, 2309 (1997).

    Article  Google Scholar 

  33. T. Klein, B. Rashkova, D. Holec, H. Clemens, and S. Mayer, Acta Mater. 110, 236 (2016).

    Article  Google Scholar 

  34. P. Erdely, R. Werner, E. Schwaighofer, H. Clemens, and S. Mayer, Intermetallics 57, 17 (2015).

    Article  Google Scholar 

  35. N. Prasad, N. Bibhanshu, N. Nayan, G.S. Avadhani, and S. Suwas, J. Mater. Res. 34, 744 (2019).

    Article  Google Scholar 

  36. J. Beddoes, L. Zhao, J.-P. Immarigeon, and W. Wallace, Mater. Sci. Eng., A 183, 211 (1994).

    Article  Google Scholar 

  37. R. Raj, Metall. Trans. A 12, 1089 (1981).

    Article  Google Scholar 

  38. S.L. Semiatin, K.A. Lark, D.R. Barker, V. Seetharaman, and B. Marquardt, Metall. Trans. A 23, 295–305 (1992).

    Article  Google Scholar 

  39. H. Jiang, F.A. Garcia-Pastor, D. Hu, X. Wu, M.H. Loretto, M. Preuss, and P.J. Withers, Acta Mater. 57, 1357 (2009).

    Article  Google Scholar 

  40. Y. Li, L. Zhou, J. Lin, H. Chang, and F. Li, J. Alloys Compd. 668, 22 (2016).

    Article  Google Scholar 

  41. S.Z. Zhang, F.T. Kong, Y.Y. Chen, Z.Y. Liu, and J.P. Lin, Intermetallics 31, 208 (2012).

    Article  Google Scholar 

  42. D. Peter, G.B. Viswanathan, M.F.X. Wagner, and G. Eggeler, Mater. Sci. Eng., A 510–511, 359 (2009).

    Article  Google Scholar 

  43. Y.J. Li, Q.M. Hu, D.S. Xu, and R. Yang, Intermetallics 19, 793 (2011).

    Article  Google Scholar 

  44. F. Appel, J.D.H. Paul, and M. Oehring, Gamma Titanium Aluminide Alloys: Science and Technology (Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014)

    Google Scholar 

  45. W. Schillinger, A. Bartels, R. Gerling, F.P. Schimansky, and H. Clemens, Intermetallics 14, 336 (2006).

    Article  Google Scholar 

  46. Y. He, Z. Liu, G. Zhou, H. Wang, C. Bai, D. Rodney, F. Appel, D. Xu, and R. Yang, Scr. Mater. 143, 98 (2018).

    Article  Google Scholar 

  47. P.B. Hirsch, Philos. Mag. 83, 1007 (2003).

    Article  Google Scholar 

  48. L. Song, L. Wang, M. Oehring, X. Hu, F. Appel, U. Lorenz, F. Pyczak, and T. Zhang, Intermetallics 109, 91 (2019).

    Article  Google Scholar 

  49. Y. He, Z. Liu, G. Zhou, H. Wang, C. Bai, D. Rodney, F. Appel, D. Xu, and R. Yang, Scr. Mater. 143, 98 (2018).

    Article  Google Scholar 

  50. F. Appel, H. Clemens, and F.D. Fischer, Prog. Mater Sci. 81, 55 (2016).

    Article  Google Scholar 

  51. R.V. Ramanujan, Int. Mater. Rev. 45, 217 (2000).

    Article  Google Scholar 

  52. S. Suwas, R.K. Ray, A.K. Singh, and S. Bhargava, Acta Mater. 47, 4585 (1999).

    Article  Google Scholar 

  53. S. Suwas and R.K. Ray, Acta Mater. 47, 4599 (1999).

    Article  Google Scholar 

  54. L. Xiang, B. Tang, X. Xue, H. Kou, and J. Li, Intermetallics 97, 52 (2018).

    Article  Google Scholar 

  55. R. Shi, H.L. Fraser, and Y.N. Wang, Acta Mater. 75, 156 (2014).

    Article  Google Scholar 

  56. W.J. Zhang and S.C. Deevi, G. L. Chen 10, 403 (2002).

    Google Scholar 

  57. S. Suwas and R.K. Ray, Bull. Mater. Sci. 22, 581 (1999).

    Article  Google Scholar 

  58. S. Suwas and R.K. Ray, Scr. Mater. 44, 275 (2001).

    Article  Google Scholar 

  59. S. Roy and S. Suwas, J. Alloys Compd. 548, 110 (2013).

    Article  Google Scholar 

  60. L. Xiang, B. Tang, X. Xue, H. Kou, and J. Li, Metals (Basel). 7, 261 (2017).

    Article  Google Scholar 

  61. H. Liu, R. Rong, F. Gao, Y. Liu, Z. Li, and Q. Wang, J. Mater. Eng. Perform. 26, 3151 (2017).

    Article  Google Scholar 

  62. N.D. Stepanov, D.G. Shaysultanov, N.Y. Yurchenko, S.V. Zherebtsov, A.N. Ladygin, G.A. Salishchev, and M.A. Tikhonovsky, Mater. Sci. Eng., A 636, 188 (2015).

    Article  Google Scholar 

  63. Y. Zong, D. Wen, W. Xu, D. Yang, D. Shan, and Z. Liu, Procedia Eng. 81, 1420 (2014).

    Article  Google Scholar 

  64. F. Chen and Z. Cui, TMS (The Miner (Proceeding: Met. Mater. Soc, 2016).

    Google Scholar 

  65. V. Seetharaman and S.L. Semiatin, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 33, 3817 (2002).

    Article  Google Scholar 

  66. A.J. Palomares-Garcia, M.T. Perez-Prado, and J.M. Molina-Aldareguia, Acta Mater. 123, 102 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out under the aegis of the GTMAP programme of Aeronautics Research and Development Board (AR&DB), Government of India. The funding provided by AR&DB is gratefully acknowledged. The authors thank Prof. Murugaiyan Amirthalingam of IIT Madras for providing the Gleeble facility. Special thanks to K. Rangan for his help in successfully carrying out all the deformation tests. The authors also acknowledge the help rendered by Dr. S. Banumathy of DMRL Hyderabad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyam Suwas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibhanshu, N., Bhattacharjee, A. & Suwas, S. Influence of Temperature and Strain Rate on Microstructural Evolution During Hot Compression of Ti-45Al-xNb-0.2C-0.2B Titanium Aluminide Alloys. JOM 71, 3552–3564 (2019). https://doi.org/10.1007/s11837-019-03722-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03722-2

Navigation