Skip to main content

Validity of Crystal Plasticity Models Near Grain Boundaries: Contribution of Elastic Strain Measurements at Micron Scale


Synchrotron Laue microdiffraction and digital image correlation measurements were coupled to track the elastic strain field (or stress field) and the total strain field near a general grain boundary in a bent bicrystal. A 316L stainless steel bicrystal was deformed in situ into the elasto-plastic regime using a four-point bending setup. The test was then simulated using finite elements with a crystal plasticity model comprising internal variables (dislocation densities on discrete slip systems). The predictions of the model are compared with both the total strain field and the elastic strain field obtained experimentally. While activated slip systems and total strains are reasonably well predicted, elastic strains appear overestimated next to the grain boundary. This suggests that conventional crystal plasticity models need improvement to correctly model stresses at grain boundaries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    D. Dye, H.J. Stone, and R.C. Reed, Curr. Opin. Solid State Mater. Sci. 5, 31 (2001).

    Article  Google Scholar 

  2. 2.

    M. Kamaya, Y. Kawamura, and T. Kitamura, Int. J. Solids Struct. 44, 3267 (2007).

    Article  Google Scholar 

  3. 3.

    M. Kamaya and M. Itakura, Eng. Fract. Mech. 76, 386 (2009).

    Article  Google Scholar 

  4. 4.

    D. Gonzalez, I. Simonovski, P.J. Withers, and J. Quinta da Fonseca, Int. J. Plastic. 61, 49 (2014).

    Article  Google Scholar 

  5. 5.

    K. Wierzbanowski, J. Tarasiuk, B. Bacroix, A. Miroux, and O. Castelnau, Archiv. Metall. 44, 183 (1999).

    Google Scholar 

  6. 6.

    A. Wauthier-Monnin, T. Chauveau, O. Castelnau, H. Réglé, and B. Bacroix, Mater. Charact. 104, 31 (2015).

    Article  Google Scholar 

  7. 7.

    G. Ribárik, J. Gubicza, and T. Ungár, Mater. Sci. Eng. A 387–389, 343 (2004).

    Article  Google Scholar 

  8. 8.

    B. Clausen, T. Lorentzen, M.A.M. Bourke, and M.R. Daymond, Mater. Sci. Eng. A 259, 17 (1999).

    Article  Google Scholar 

  9. 9.

    J.W.L. Pang, T.M. Holden, J.S. Wright, and T.E. Mason, Acta Mater. 48, 1131 (2000).

    Article  Google Scholar 

  10. 10.

    R. Lin Peng, M. Odén, Y.D. Wang, and S. Johansson, Mater. Sci. Eng. A 334, 215 (2002).

    Article  Google Scholar 

  11. 11.

    M. Bornert, F. Brémand, P. Doumalin, J.-C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J.-J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, Exp. Mech. 49, 353 (2009).

    Article  Google Scholar 

  12. 12.

    A.J. Wilkinson, G. Meaden, and D.J. Dingley, Ultramicroscopy 106, 307 (2006).

    Article  Google Scholar 

  13. 13.

    C. Maurice, J.H. Driver, and R. Fortunier, Ultramicroscopy 113, 171 (2012).

    Article  Google Scholar 

  14. 14.

    J.S. Chung and G.E. Ice, J. Appl. Phys. 86, 5249 (1999).

    Article  Google Scholar 

  15. 15.

    B. Jakobsen, H.F. Poulsen, U. Lienert, and W. Pantleon, Acta Mater. 55, 3421 (2007).

    Article  Google Scholar 

  16. 16.

    V. Taupin, L. Capolungo, C. Fressengeas, M. Upadhyay, and B. Beausir, Int. J. Solids Struct. 71, 277 (2015).

    Article  Google Scholar 

  17. 17.

    P.R.M. van Beers, G.J. McShane, V.G. Kouznetsova, and M.G.D. Geers, J. Mech. Phys. Solids 61, 2659 (2013).

    MathSciNet  Article  Google Scholar 

  18. 18.

    L. Priester, Grain Boundaries, From Theory to Engineering, Vol. 172Springer Series in Materials Science, (Berlin: Springer, 2012).

    Google Scholar 

  19. 19.

    C. Teodosiu, J. Raphanel, and L. Tabourot, Large Plastic Deformations, ed. C. Teodosiu, J. Raphanel, and F. Sidoro (Rotterdam: A.A. Balkema, 1993), pp. 153–175.

    Google Scholar 

  20. 20.

    L. Méric, P. Poubanne, and G. Cailletaud, Trans. ASME 113, 162 (1991).

    Google Scholar 

  21. 21.

    E. Plancher, J. Petit, C. Maurice, V. Favier, L. Saintoyant, D. Loisnard, N. Rupin, J.-B. Marijon, O. Ulrich, M. Bornert, J.-S. Micha, O. Robach, and O. Castelnau, Exp. Mech. 56, 483 (2016).

    Article  Google Scholar 

  22. 22.

    E. Plancher, V. Favier, C. Maurice, E. Bosso, N. Rupin, J. Stodolna, D. Loisnard, J.-B. Marijon, J. Petit, J.-S. Micha, O. Robach, and O. Castelnau, J. Appl. Cryst. 50, 940 (2017).

    Article  Google Scholar 

  23. 23.

    O. Ulrich, X. Biquard, P. Bleuet, O. Geaymond, P. Gergaud, J.S. Micha, O. Robach, and F. Rieutord, Rev. Sci. Instrum. 82, 033908 (2011).

    Article  Google Scholar 

  24. 24.

    O. Robach, C. Kirchlechner, J.S. Micha, O. Ulrich, X. Biquard, O. Geaymond, O. Castelnau, M. Bornert, J. Petit, S. Berveiller, O. Sicardy, J. Villanova, and F. Rieutord, Chapter 5: Laue microdiffraction at ESRF.Strain and Dislocation Gradients from Diffraction, ed. R.I. Barabash and G.E. Ice (Singapore: Imperial College Press/World Scientific, 2014), pp. 156–204.

    Chapter  Google Scholar 

  25. 25.

    J.S. Chung and G.E. Ice, J. Appl. Phys. 86, 5249 (1999).

    Article  Google Scholar 

  26. 26.

    E.H. Lee, J. Appl. Mech. 36, 1 (1969).

    Article  Google Scholar 

  27. 27.

    P. Franciosi, Acta Metall. 33, 1601 (1985).

    Article  Google Scholar 

  28. 28.

    D. Peirce, R.J. Asaro, and A. Needleman, Acta Metall. 31, 1951 (1983).

    Article  Google Scholar 

  29. 29.

    P. Erieau and C. Rey, Int. J. Plast. 20, 1763 (2004).

    Article  Google Scholar 

  30. 30.

    J. Schwartz, C. Rey, and O. Fandeur, Int. J. Fatigue 55, 202 (2013).

    Article  Google Scholar 

  31. 31.

    R.F. Laubscher, Ph.D. thesis, Rand Afrikans University, 1997.

  32. 32.

    B. Devincre, L. Kubin, and T. Hoc, Science 320, 1745 (2008).

    Article  Google Scholar 

  33. 33.

    A.J. Beaudouin, M. Obstalecki, R. Storer, W. Tayon, J. Mach, P. Kenesei, and U. Lienert, Modell. Simul. Mater. Sci. Eng. 20, 024006 (2012).

    Article  Google Scholar 

  34. 34.

    M.P. Miller and P.R. Dawson, Curr. Opin. Solid State Mater. Sci. 18, 286 (2014).

    Article  Google Scholar 

  35. 35.

    C. Rey and A. Zaoui, Acta Metall. 28, 687 (1980).

    Article  Google Scholar 

  36. 36.

    C. Rey, Rev. Phys. Appl. 23, 491 (1988).

    Article  Google Scholar 

  37. 37.

    R. Dakhlaoui, A. Baczmanski, C. Braham, S. Wronski, K. Wierzbanowski, and E.C. Oliver, Acta Mater. 54, 5027 (2006).

    Article  Google Scholar 

  38. 38.

    D. Faurie, P. Djemia, E. Le Bourhis, P.-O. Renault, Y. Roussigné, S.M. Chérif, R. Brenner, O. Castelnau, G. Patriarche, and Ph Goudeau, Acta Mater. 58, 4998 (2010).

    Article  Google Scholar 

  39. 39.

    H. Wang, B. Clausen, C.N. Tomé, and P.D. Wu, Acta Mater. 61, 1179 (2013).

    Article  Google Scholar 

  40. 40.

    K.J. Kurzydlowski, R.A. Varin, and W. Zielinski, Acta Metall. 32, 71 (1984).

    Article  Google Scholar 

  41. 41.

    H. Wang, B. Clausen, L. Capolungo, I.J. Beyerlein, J. Wang, and C.N. Tomé, Int. J. Plast. 79, 275 (2016).

    Article  Google Scholar 

  42. 42.

    I. Tiba, T. Richeton, C. Motz, H. Vehoff, and S. Berbenni, Acta Mater. 83, 227 (2015).

    Article  Google Scholar 

  43. 43.

    T.R. Bieler, P. Eisenlohra, C. Zhang, H.J. Phukan, and M.A. Crimp, Curr. Opin. Solid State Mater. Sci. 18, 212 (2014).

    Article  Google Scholar 

  44. 44.

    J. Petit, O. Castelnau, M. Bornert, F. Zhang, F. Hofmann, A.M. Korsunsky, D. Faurie, C. Le Bourlot, J.S. Micha, O. Robach, and O. Ulrich, J. Synchr. Rad. 22, 980 (2015).

    Article  Google Scholar 

  45. 45.

    F.G. Zhang, O. Castelnau, M. Bornert, J. Petit, J.B. Marijon, and E. Plancher, J. Appl. Cryst. 48, 1805 (2015).

    Article  Google Scholar 

  46. 46.

    F.G. Zhang, M. Bornert, J. Petit, and O. Castelnau, J. Synchr. Rad. 24, 802 (2017).

    Article  Google Scholar 

  47. 47.

    W.A.T. Clark, R.H. Wagoner, Z.Y. Shen, T.C. Lee, I.M. Robertson, and H.K. Birnbaum, Scr. Metall. Mater. 26, 203 (1992).

    Article  Google Scholar 

  48. 48.

    J. Gemperlova, V. Paidar, and F. Kroupa, Czech J. Phys. B 39, 427 (1989).

    Article  Google Scholar 

  49. 49.

    N.M. Cordero, S. Forest, E.P. Busso, S. Berbenni, and M. Cherkaoui, Comput. Mater. Sci. 52, 7 (2012).

    Article  Google Scholar 

  50. 50.

    A. Acharya, Philos. Mag. 87, 1349 (2007).

    Article  Google Scholar 

  51. 51.

    N.V. Malyar, G. Dehm, and C. Kirchlechner, Scr. Mater. 138, 88 (2017).

    Article  Google Scholar 

Download references


C. Rey is warmly thanked by the authors for many fruitful discussions and for allowing us to use the CristalECP code. The Laboratoire d’Imagerie Biomédical of Sorbonne Université (Paris, France) is acknowledged for its help in measuring elastic constants by ultrasonic means. Beamtime allocation at the French Beamline BM32 CRG-IF at the European Synchrotron Facility (ESRF) is gratefully acknowledged (Award Nos. HC/913 & HC/1449).

Author information



Corresponding author

Correspondence to Thierry Auger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Plancher, E., Tajdary, P., Auger, T. et al. Validity of Crystal Plasticity Models Near Grain Boundaries: Contribution of Elastic Strain Measurements at Micron Scale. JOM 71, 3543–3551 (2019).

Download citation