Skip to main content
Log in

Visualization of Kirkendall Voids at Cu-Au Interfaces by In Situ TEM Heating Studies

  • Mesoscale Materials Science: Experiments and Modeling
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Gold-plated copper alloys are used extensively in electrical contacts where diffusional processes are known to cause contact degradation. An in situ transmission electron microscopy (TEM) heating study was carried out to provide fundamental understanding of the aging phenomena in reasonable timescales. Samples to visualize the interface in TEM were prepared by focused ion beam (FIB) microscopy and heated in situ up to 350°C while holding at intermediate temperatures to enable imaging. The grain boundaries in Au coatings, specifically the columnar boundaries, provided rapid pathways for diffusion of Cu all the way to the Au surface. This unequal diffusion created vacancies in Cu which coalesced into Kirkendall voids. This in situ technique has been applied to visualize the diffusion pathways in electroplated and sputtered Au films deposited directly on Cu, as well the role of Ni and NiP as barrier layers for mitigating Cu diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Goodman, Gold Bull. 35, 21 (2002).

    Article  Google Scholar 

  2. M. Antler, Plated coatings for electrical contacts In: The Role of Coatings in the Prevention of Mechanical Failures, Proc. of the 23rd Meeting of the Mechanical Failures Prevention Group. U.S. National Bureau of Standards. Edited by T. R. Shives and W. A. Willard, 64 (1976).

  3. M. Antler and I.E.E.E. Trans, Parts Hybrids Packag. 9, 4 (1973).

    Article  Google Scholar 

  4. M.R. Pinnel, Gold Bull. 12, 62 (1979).

    Article  Google Scholar 

  5. J.A. Greenwood, Br. J. Appl. Phys. 17, 1621 (1966).

    Article  Google Scholar 

  6. F.P. Bowden and D. Tabor, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 169, 391 (1939).

    Article  Google Scholar 

  7. R. Holm, Electric Contacts: Theory and Application, 4th ed. (New York: Springer, 1967).

    Book  Google Scholar 

  8. R.W. Ballufi and J.M. Blakely, Thin Solid Films 25, 363 (1975).

    Article  Google Scholar 

  9. H.G. Tompkins and M.R. Pinnel, J. Appl. Phys. 47, 3804 (1976).

    Article  Google Scholar 

  10. P.H. Holloway, D.E. Amos, and G.C. Nelson, J. Appl. Phys. 47, 3769 (1976).

    Article  Google Scholar 

  11. M.R. Pinnel and J.E. Bennett, Metall. Mater. Trans. A 7, 629 (1976).

    Article  Google Scholar 

  12. D. Duhl, K.-I. Hirano, and M. Cohen, Acta Metall. 11, 1 (1963).

    Article  Google Scholar 

  13. E.O. Kirkendall, Trans. AIME 147, 104 (1942).

    Google Scholar 

  14. A.D. Smigelskas and E.O. Kirkendall, Trans. AIME 171, 130 (1947).

    Google Scholar 

  15. P.M. Hall, J.M. Morabito, and N.J. Panousis, Thin Solid Films 41, 341 (1977).

    Article  Google Scholar 

  16. J. Rankin and B.W. Sheldon, Mater. Sci. Eng. A 204, 48 (1985).

    Article  Google Scholar 

  17. H. Majidi, T.B. Holland, and K. van Benthem, Ultramicroscopy 152, 35 (2015).

    Article  Google Scholar 

  18. K. Holloway and R. Sinclair, J. Less Common Metals 140, 139 (1988).

    Article  Google Scholar 

  19. L. Ahmels, A.A. Kashiwar, T. Scherer, C. Kubel, and E. Bruder, J. Mater. Sci. 54, 10489 (2019).

    Article  Google Scholar 

  20. T.W. Scharf, R.S. Goeke, P.G. Kotula, and S.V. Prasad, Appl. Mater. Interfaces 5, 11762 (2013).

    Article  Google Scholar 

  21. J.R. Michael, P.G. Kotula, and S.V. Prasad, Advancd Analytical methods in Tribology, ed. M. Dienwiebel and M.-I. De Barros-Bouchet (Berlin: Springer, 2018),

    Google Scholar 

  22. H. Zang, Thin Solid Films 320, 77 (1998).

    Article  Google Scholar 

  23. ASTM B488-11, Standard Specification for Electroplated Coatings of Gold for Engineering Uses, ASTM International, PA.

  24. MIL-DTL-45204D, Gold Plating, Electrodeposited, June 1983.

  25. L.A. Giannuzzi, B.W. Kempshall, S.M. Schwartz, J.K. Lomness, B.I. Prenitzer, and F.A. Steve, FIB Lift-out Specimen Preparation Techniques.Introduction to Focused Ion Beams Instrumentation, Theory, Techniques and Practice, ed. L.A. Giannuzzi (New York: Springer, 2005),

    Chapter  Google Scholar 

  26. P.G. Kotula, M.R. Keenan, and J.R. Michael, Microsc. Microanal. 9, 1 (2003).

    Article  Google Scholar 

  27. F.S. Shoucair, Microelectron. J. 22, 39 (1991).

    Article  Google Scholar 

  28. P. Thévenaz, U.E. Ruttimann, M. Unser, and I.E.E.E. Trans, Image Process. 7, 27 (1998).

    Article  Google Scholar 

  29. N. Argibay, M.T. Brumbach, M.T. Dugger, and P.G. Kotula, J. Appl. Phys. 113, 114906 (2013).

    Article  Google Scholar 

  30. H. Okamoto, J. Phase Equilib. 21, 210 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Damion Cummings for preparing the in situ FIB lift-outs and Rand Garfield for his help with sample preparation. The authors thank Aaron Velsquez (Theta Plate, Albuquerque, NM) and Andy Korenyi Both (Tribologix, Golden, CO) for their help with electroplating and high-power impulse magnetron sputtering, respectively. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the US Department of Energy or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Kotula.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotula, P.G., Prasad, S.V. Visualization of Kirkendall Voids at Cu-Au Interfaces by In Situ TEM Heating Studies. JOM 71, 3521–3530 (2019). https://doi.org/10.1007/s11837-019-03708-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03708-0

Navigation