Skip to main content
Log in

Creep of Metallic Materials in Bending

  • Mesoscale Materials Science: Experiments and Modeling
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The creep behavior of metallic materials in bending has received limited attention because of the complexity of the stress state and the nontrivial correlation with an equivalent uniaxially deformed state. Furthermore, conventional creep testing methods, i.e., under uniaxial tension and compression, which have a constant stress state during creep and well-established data interpretation protocols, are adequate for studying the creep properties of most materials. Hence, the creep properties of metallic systems have rarely been evaluated in bending. Currently, there is an increase in the demand for testing in-service components and materials having microstructures on small length scales (e.g., a few tens to hundreds of micrometers). In this situation, the material for testing is often in short supply and the dimensions of the relevant samples are very small, thus limiting the feasibility of uniaxial tests. This warrants development of alternate testing techniques, such as indentation and bending, that are ideally suited for testing small-volume samples. In particular, cantilever bending is quite attractive given the possibility of obtaining multiple data points covering a range of stresses from a single sample and the ease of sample fabrication, alignment, and gripping while testing at a small length scale. In addition, the mechanics of power-law creep in bending is well understood and developed. We present herein a review of seminal literature on power-law creep in bending, a topic which has been investigated for almost 90 years now, and an outlook on adopting bending of cantilevers as a mainstream methodology for characterizing the creep behavior of metallic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Creep is a time-dependent deformation process that becomes relevant at temperatures higher than 0.35 times the melting temperature for metals.

  2. The definition of a small sample depends on the testing method as well. A compression sample of < 1.5 mm to 3 mm in diameter and a tensile sample having a gauge length of < 5 mm to 12 mm are usually considered small. Hyde and Sun46 discuss the small sample size in more detail.

  3. Note that many of the datum points in Fig. 3b cannot be plotted in Fig. 3c because they were not recorded at the same time interval.

  4. Sato et al. 47 defined the constants C1, C2, and C3 more elaborately.

  5. A comprehensive report on the possible errors in measuring creep data in bending is provided by Boyle and Spence24, while those related to experimentation of cantilever beam under creep condition are described by Zhuang et al.26.

  6. Beams with L/h < 5 develop significant shear stresses, which becomes negligible for beams with L/h > 10. L/h of 5 to 10 represents the transition region, which is sometimes chosen to avoid the large deflections observed in beams with L/h > 10.

Abbreviations

\( \varepsilon \) :

Total strain (elastic and creep)

\( \dot{\varepsilon }_{\text{ss}} \) :

Steady-state strain rate

y :

Distance from neutral axis of beam

z :

Distance from loading end of beam

L :

Span length of four-point beam or length of cantilever

\( \delta_{\text{tip}} \) :

Steady-state deflection at loading end of beam

\( \dot{\delta }_{\text{tip}} \) :

Steady-state deflection rate at loading end of beam

\( \dot{k} \) :

Rate of curvature of beam

\( \sigma_{\text{s}} \) :

Saturated stress state in beam during creep

\( \sigma_{\hbox{max} } \) :

Saturated stress state in beam during creep at the outer fiber

\( \varepsilon_{\hbox{max} } \) :

Creep strain in beam at the outer fiber

\( \dot{\varepsilon }_{\hbox{max} } \) :

Creep strain rate in beam at the outer fiber

\( \varepsilon_{{\hbox{max} - {\text{ss}}}} \) :

Steady-state creep strain in beam at the outer fiber

\( \dot{\varepsilon }_{{\hbox{max} - {\text{ss}}}} \) :

Steady-state creep strain rate in beam at the outer fiber

\( \varepsilon_{\text{elastic}} \) :

Elastic strain

\( \varepsilon_{\text{pri}} \) :

Primary strain

\( \varepsilon_{\text{ss}} \) :

Steady-state strain

\( \varepsilon_{\text{creep}} \) :

Creep strain = \( \varepsilon_{\text{pri}} + \varepsilon_{\text{ss}} \)

n :

Stress exponent

d :

Measured deflection

M :

Applied moment (M, is generically used throughout the paper. M is constant for four-point bending, equal to PL/4 at the loading end for three-point bending, and equal to Pz for cantilever)

P :

Applied load

k :

Curvature of beam

h :

Full beam height

b :

Width of beam

t :

Time

I :

Second moment of inertia

Q :

Activation energy for creep

References

  1. A. Srivastava, S. Gopagoni, A. Needleman, V. Seetharaman, A. Staroselsky, and R. Banerjee, Acta Mater. 60, 5697 (2012).

    Article  Google Scholar 

  2. A. Baldan, J. Mater. Sci. 30, 6288 (1995).

    Article  Google Scholar 

  3. R. Goodall and T.W. Clyne, Acta Mater. 54, 5489 (2006).

    Article  Google Scholar 

  4. I.C. Choi, B.G. Yoo, Y.J. Kim, and J.I. Jang, J. Mater. Res. 27, 3 (2012).

    Article  Google Scholar 

  5. J. Dean, A. Bradbury, G. Aldrich-Smith, and T.W. Clyne, Mech. Mater. 65, 124 (2013).

    Article  Google Scholar 

  6. L. Da Vinci, Codex MAdrid (n.d.). http://www.codex-madrid.rwth-aachen.de/katalog_e/indices/lst_titl_3t.html.

  7. G. Galileo, Dialogues Concerning Two New Sciences (Discorsi e dimostrazioni matematiche intorno a due nuove scienze) (1638).

  8. G.H. MacCullough, J. Appl. Mech. 9, 55 (1933).

    Google Scholar 

  9. S. Timoshenko, Strength of Materials, Part II: Advanced Theory and Problems (New York: D. Van Nostrand Company, Inc.), pp. 362 (1940).

  10. A. Nadai and A.M. Wahl, Plasticity: A Mechanics of the Plastic State of Matter (New York: McGraw-Hill Book Co., 1931).

    MATH  Google Scholar 

  11. H.J. Tapsell and A.E. Johnson, Mon. J. Inst. Met. 58, 387 (1935).

    Google Scholar 

  12. R.W. Bailey, Proc. Inst. Mech. Eng. 131, 131 (1935).

    Article  Google Scholar 

  13. A.W. Davis, J. Appl. Mech. 5, A149 (1938).

    Google Scholar 

  14. E.P. Popov, J. Appl. Phys. 20, 251 (1949).

    Article  Google Scholar 

  15. Y.-H. Pao and J. Marin, J. Appl. Mech. 478 (1952).

  16. G.T. Harris and H.C. Child, J. Iron Steel Inst. 165, 139 (1950).

    Google Scholar 

  17. G.W. Hollenberg, G.R. Terwilliger, and R.S. Gordon, J. Am. Ceram. Soc. 54, 196 (1971).

    Article  Google Scholar 

  18. W. Flligge, Viscoelasticity (London: Blaisdell Publishing Company, 1975).

    Book  Google Scholar 

  19. P.K. Talty and R.A. Dirks, J. Mater. Sci. 13, 580 (1978).

    Article  Google Scholar 

  20. A. Venkateswaran and D.P.H. Hasselman, J. Am. Ceram. Soc. 67, C-144 (1984).

    Google Scholar 

  21. H. Cohrt, G. Grathwohl, and F. Thummler, Tech. Mech. 10, 55 (1984).

    Google Scholar 

  22. A.H. Chokshi and J.R. Porter, J. Am. Ceram. Soc. 68, C-144 (1985).

    Article  Google Scholar 

  23. K. Jakus and S.M. Wiederhorn, J. Am. Ceram. Soc. 71, 832 (1988).

    Article  Google Scholar 

  24. J.T. Boyle and J. Spence, Stress Analysis for Creep (London: Butterworth & Co. Ltd., 1983).

    Google Scholar 

  25. A.-R. Ragab and S.E. Bayoumi, Plastic Instability, Superplasticity, and Creep (New York: CRC Press Boca Raton, 1999).

  26. F.K. Zhuang, S.T. Tu, G.Y. Zhou, and Q.Q. Wang, Fatigue Fract. Eng. Mater. Struct. 38, 257 (2015).

    Article  Google Scholar 

  27. R. Viswanathan and J. Nutting, Advanced Heat Resistant Steels for Power Generation (San Sebastian, Spain, 1999).

  28. B.X. Xu, Z.F. Yue, and G. Eggeler, Acta Mater. 55, 6275 (2007).

    Article  Google Scholar 

  29. R.G. Sturm, C. Dumont, and M. Howell, J. Appl. Mech. 3, A-62 (1936).

    Google Scholar 

  30. T.J. Chuang, J. Mater. Sci. 21, 165 (1986).

    Article  Google Scholar 

  31. I. Finnie, J. Am. Ceram. Soc. 49, 218 (1966).

    Article  Google Scholar 

  32. A.M. Lokoshchenko, K.A. Agakhi, and L.V. Fomin, J. Mach. Manuf. Reliab. 42, 319 (2013).

    Article  Google Scholar 

  33. F.Y.C. Boey and S.H. Teoh, Mater. Sci. Eng. A 123, 13 (1990).

    Article  Google Scholar 

  34. D.S. Walters and S.M. Spearing, Scr. Mater. 42, 769 (2000).

    Article  Google Scholar 

  35. O.D. Sherby, J.L. Lytton, and J.E. Dorn, Acta Metall. 5, 219 (1957).

    Article  Google Scholar 

  36. A.R. Rosenfield, W.H. Duckworth, and D.K. Shetty, J. Am. Ceram. Soc. 68, 483 (1985).

    Article  Google Scholar 

  37. S.I.A. Jalali, P. Kumar and V. Jayaram, MS-MAT-2019-009 (2019), India Patent, (Applied).

  38. T.H. Courtney, Mechanical Behaviour of Materials (Long Grove: Waveland Press, 2005), pp. 164.

  39. E. Husser and S. Bargmann, Materials (Basel) 10, 1 (2017).

    Article  Google Scholar 

  40. N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson, Acta Metall. Mater. 42, 475 (1994).

    Article  Google Scholar 

  41. D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, and P. Tong, J. Mech. Phys. Mech. Behav. Mater. Solids 51, 1477 (2003).

    Article  Google Scholar 

  42. V. Srivastava, H. Jones, and G.W. Greenwood, Proc. R. Soc. A Math. Phys. Eng. Sci. 462, 2863 (2006).

    Article  Google Scholar 

  43. S.F. Wen, W.Z. Yan, J.X. Kang, J. Liu, and Z.F. Yue, Mater. Des. 31, 3531 (2010).

    Article  Google Scholar 

  44. H.K. Liu and J.J. Chao, Int. J. Damage Mech. 24, 947 (2015).

    Article  Google Scholar 

  45. L.N.B. Gummadi and A.N. Palazotto, Int. J. Non Linear Mech. 33, 615 (1998).

    Article  Google Scholar 

  46. T.H. Hyde and W. Sun, Mater. High Temp. 27, 157 (2010).

    Article  Google Scholar 

  47. S. Sato, M.-C. Chu, Y. Kobayashi, and K. Ando, J. Ceram. Soc. Jpn. 104, 1035 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Aeronautical Research and Development Board, India (ARDB 0242), India and Ministries of Human Resource Development and Power, Government of India (IMPRINT 0009) for financially supporting this work. Authors would also like to thank Drs. Abhijit Ghosh and Jyotirmay Kar, and Mr. Dinesh Singh, Ms. Priya Goel, Mr. Faizan Hijazi and Mr. Shreehard Sahoo for meaningful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Jayaram.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalali, S.I.A., Kumar, P. & Jayaram, V. Creep of Metallic Materials in Bending. JOM 71, 3565–3583 (2019). https://doi.org/10.1007/s11837-019-03707-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03707-1

Navigation