Skip to main content
Log in

Application of In Situ TEM to Investigate Irradiation Creep in Nanocrystalline Zirconium

  • New Developments in Nanomechanical Methods
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This work characterizes the irradiation creep response of nanocrystalline zirconium by nanoscale quantitative tensile loading and ion irradiation experiments performed simultaneously in situ inside a transmission electron microscope. Microfabricated devices consisting of a freestanding Zr tensile specimen 100 nm in thickness on an elastic Si test frame were produced, and subsequent ex situ ion irradiations were performed on devices with 1.4 MeV Zr ions to a nominal damage level of 0.26 displacement per atom. Subsequent in situ creep experiments performed with and without 1.4 MeV Zr ion irradiation at different applied tensile loads revealed that creep rates were enhanced by the simultaneous radiation damage. This coupled in situ nanomechanical and irradiation methodology enables rapid quantification of both the irradiation creep compliance and associated microstructural evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.J. Zinkle and G.S. Was, Acta Mater. 61, 735 (2013).

    Article  Google Scholar 

  2. K.L. Murty and I. Charit, J. Nucl. Mater. 383, 189 (2008).

    Article  Google Scholar 

  3. I.J. Beyerlein, A. Caro, M.J. Demkowicz, N.A. Mara, A. Misra, and B.P. Uberuaga, Mater. Today 16, 443 (2013).

  4. W.Z. Han, M.J. Demkowicz, N.A. Mara, E.G. Fu, S. Sinha, A.D. Rollett, Y.Q. Wang, J.S. Carpenter, I.J. Beyerlein, and A. Misra, Adv. Mater. 25, 6975 (2013).

    Article  Google Scholar 

  5. C.M. Barr, O. El-Atwani, D. Kaoumi, and K. Hattar, JOM 71, 1233 (2019).

    Article  Google Scholar 

  6. X. Zhang, K. Hattar, Y. Chen, L. Shao, J. Li, C. Sun, K. Yu, N. Li, M.L. Taheri, H. Wang, J. Wang, and M. Nastasi, Prog. Mater. Sci. 96, 217 (2018).

    Article  Google Scholar 

  7. M. Jin, P. Cao, S. Yip, and M.P. Short, Acta Mater. 155, 410 (2018).

    Article  Google Scholar 

  8. T.D. Shen, Nucl. Instrum. Methods Phys. Res. Sect. B 266, 921 (2008).

  9. I.J. Beyerlein, M.J. Demkowicz, A. Misra, and B.P. Uberuaga, Prog. Mater. Sci. 74, 125 (2015).

  10. B.G. Kim, J.L. Rempe, D.L. Nudson, K.G. Condie, and B.H. Sencer, Nucl. Technol. 179, 417 (2012).

  11. C. Xu and G.S. Was, J. Nucl. Mater. 459, 183 (2015).

    Article  Google Scholar 

  12. C. Xu and G.S. Was, J. Nucl. Mater. 454, 255 (2014).

    Article  Google Scholar 

  13. G.S. Was, Z. Jiao, E. Getto, K. Sun, A.M. Monterrosa, S.A. Maloy, O. Anderoglu, B.H. Sencer, and M. Hackett, Scr. Mater. 88, 33 (2014).

    Article  Google Scholar 

  14. S. Taller, D. Woodley, E. Getto, A.M. Monterrosa, Z. Jiao, O. Toader, F. Naab, T. Kubley, S. Dwaraknath, and G.S. Was, Nucl. Instrum. Methods Phys. Res. Sect. B 412, 1 (2017).

    Article  Google Scholar 

  15. G.S. Was, J.T. Busby, T. Allen, E.A. Kenik, A. Jenssen, S.M. Bruemmer, J. Gan, A.D. Edwards, P.M. Scott, and P.L. Andresen, J. Nucl. Mater. 300, 198 (2002).

  16. P. Hosemann, C. Shin, and D. Kiener, J. Mater. Res. 30, 1231 (2015).

    Article  Google Scholar 

  17. P. Hosemann, Scr. Mater. 143, 161 (2018).

    Article  Google Scholar 

  18. A. Prasitthipayong, D. Frazer, A. Kareer, M.D. Abad, A. Garner, B. Joni, T. Ungar, G. Ribarik, M. Preuss, L. Balogh, S.J. Tumey, A.M. Minor, and P. Hosemann, Nucl. Mater. Energy 16, 34 (2018).

    Article  Google Scholar 

  19. D. Kiener, P. Hosemann, S.A. Maloy, and A.M. Minor, Nat. Mater. 10, 608 (2011).

  20. J.P. Wharry, K.H. Yano, and P.V. Patki, Scr. Mater. 162, 63 (2019).

    Article  Google Scholar 

  21. G. Dehm, B.N. Jaya, R. Raghavan, and C. Kirchlechner, Acta Mater. 142, 248 (2018).

    Article  Google Scholar 

  22. K. Tai, R.S. Averback, P. Bellon, and Y. Ashkenazy, Scr. Mater. 65, 163 (2011).

  23. K. Tai, R.S. Averback, P. Bellon, Y. Ashkenazy, and B. Stumphy, J. Nucl. Mater. 422, 8 (2012).

  24. S. Özerinç, R.S. Averback, and W.P. King, J. Nucl. Mater. 451, 104 (2014).

  25. P. Lapouge, F. Onimus, R. Vayrette, J.P. Raskin, T. Pardoen, and Y. Bréchet, J. Nucl. Mater. 476, 20 (2016).

  26. S. Özerinç, R.S. Averback, and W.P. King, JOM 68, 2737 (2016).

    Article  Google Scholar 

  27. S.J. Dillon, D.C. Bufford, G.S. Jawaharram, X.Y. Liu, C. Lear, K. Hattar, and R.S. Averback, J. Nucl. Mater. 490, 59 (2017).

  28. G.S. Jawaharram, P.M. Price, C.M. Barr, K. Hattar, R.S. Averback, and S.J. Dillon, Scr. Mater. 148, 1 (2018).

    Article  Google Scholar 

  29. P. Lapouge, F. Onimus, M. Coulombier, J.P. Raskin, T. Pardoen, and Y. Bréchet, Acta Mater. 131, 77 (2017).

    Article  Google Scholar 

  30. J.R. Greer and J.T.M. De Hosson, Prog. Mater. Sci. 56, 654 (2011).

    Article  Google Scholar 

  31. B. Wang, M.A. Haque, V. Tomar, and K. Hattar, MRS Commun. 7, 595 (2017).

    Article  Google Scholar 

  32. K. Hattar, D. Bufford, and D.L. Buller, Nucl. Instrum. Methods Phys. Res. Sect. B 338, 56 (2014).

    Article  Google Scholar 

  33. J.F. Ziegler, M.D. Ziegler, and J.P. Biersack, Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1818 (2010).

    Article  Google Scholar 

  34. R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, and F.A. Garner, Nucl. Instrum. Methods Phys. Res. Sect. B 310, 75 (2013).

    Article  Google Scholar 

  35. C.E. Klabunde and R.R. Coltman, J. Nucl. Mater. 108, 183 (1982).

    Article  Google Scholar 

  36. P.G. Sanders, M. Rittner, E. Kiedaisch, J.R. Weertman, H. Kung, and Y.C. Lu, Nanostruct. Mater. 9, 433 (1997).

    Article  Google Scholar 

  37. G.S. Was, Fundamentals of radiation materials science: metals and alloys (New York: Springer, 2007).

    Google Scholar 

  38. M. Li, D.T. Hoelzer, M.L. Grossbeck, A.F. Rowcliffe, S.J. Zinkle, and R.J. Kurtz, J. Nucl. Mater. 386–388, 618 (2009).

    Article  Google Scholar 

  39. C.H. Woo, A.R. Causey, and R.A. Holt, Philos. Mag. A 79, 59 (1999).

    Article  Google Scholar 

  40. A.R. Causey, C.H. Woo, and R.A. Holt, J. Nucl. Mater. 159, 225 (1988).

  41. R.L. Coble, J. Appl. Phys. 34, 1679 (1963).

    Article  Google Scholar 

  42. D. Kaoumi, A.T. Motta, and R.C. Birtcher, J. Appl. Phys. 104, 073525 (2008).

    Article  Google Scholar 

  43. D.C. Bufford, F.F. Abdeljawad, S.M. Foiles, and K. Hattar, Appl. Phys. Lett. 107, 191901 (2015).

    Article  Google Scholar 

  44. L. Capolungo, I.J. Beyerlein, G.C. Kaschner, and C.N. Tomé, Mater. Sci. Eng. A 513–514, 42 (2009).

    Article  Google Scholar 

  45. M.H. Yoo and J.K. Lee, Philos. Mag. A 63, 987 (1991).

    Article  Google Scholar 

  46. J. Wang, J.P. Hirth, and C.N. Tomé, Acta Mater. 57, 5521 (2009).

    Article  Google Scholar 

  47. S.G. Mayr and R.S. Averback, Phys. Rev. B 68, 214105 (2003).

  48. C.A. Taylor, D.C. Bufford, B.R. Muntifering, D. Senor, M. Steckbeck, J. Davis, B. Doyle, D. Buller, and K.M. Hattar, Materials 10, 1148 (2017).

    Article  Google Scholar 

  49. G.J.C. Carpenter, R.H. Zee, and A. Rogerson, J. Nucl. Mater. 159, 86 (1988).

  50. D.C. Bufford, D. Stauffer, W.M. Mook, S.A. Syed Asif, B.L. Boyce, and K. Hattar, Nano Lett. 16, 4946 (2016).

    Article  Google Scholar 

  51. J.D. Schuler, C.M. Barr, N.M. Heckman, G. Copeland, B.L. Boyce, K. Hattar, and T.J. Rupert, JOM 71, 1221 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank E. Hintsala, D. Stauffer, (Bruker/Hysitron, Inc.), M. Kathleen Alam, T. Clark, B.L. Boyce, D.L. Buller, J. Dellinger, T.A. Furnish, W.M. Mook, R. Sisson, and S. Van Deusen (Sandia National Laboratories) for their assistance with this work. B.W. and A.H. acknowledge the support from the National Science Foundation (DMR 1609060). Work performed by D.C.B., C.M.B., and K.H. was fully supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly-owned subsidiary of Honeywell International, Inc., for the U.S. DOE’s National Nuclear Security Administration under contract DE-NA-0003525. The views expressed in the article do not necessarily represent the views of the U.S. DOE or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Hattar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 695 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bufford, D.C., Barr, C.M., Wang, B. et al. Application of In Situ TEM to Investigate Irradiation Creep in Nanocrystalline Zirconium. JOM 71, 3350–3357 (2019). https://doi.org/10.1007/s11837-019-03701-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03701-7

Navigation