Skip to main content
Log in

High-Resolution Acoustic Emission Monitoring in Nanomechanics

  • New Developments in Nanomechanical Methods
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In many cases, the load–depth–time record in a nanomechanical or nanotribological test does not provide sufficient information, and subsequent microscopic imaging does not directly provide information on the dynamics of the process being studied. Analysis of the acoustic waves generated during these tests can overcome this drawback and offer a non-destructive way for obtaining complementary information. Acoustic waves emitted during mechanical tests at the nano/micro scale are a rich source of information about the deformation behavior that can otherwise be inaccessible by traditional methods. Analysis of acoustic emissions (AE) can provide a better understanding and more complex interpretation of nanomechanical and nanotribological results even at the nano/micro scale. In this study, the strength of an AE-based method is demonstrated for various types of materials, including hard SiC coatings, silicalite-1 zeolite microcrystals, Fe3Si bulk and partially stabilized zirconia explored using nano-indentation, nano-scratch tests and repetitive nano-impact tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Ctvrtlik, M. Al-Haik, and V. Kulikovsky, J. Mater. Sci. 50, 1553 (2015).

    Article  Google Scholar 

  2. N.H. Faisal, R. Ahmed, and R.L. Reuben, Int. Mater. Rev. 56, 98 (2011).

    Article  Google Scholar 

  3. A. Vinogradov, A.V. Danyuk, D.L. Merson, and I.S. Yasnikov, Scr. Mater. 151, 53 (2018).

    Article  Google Scholar 

  4. N.H. Faisal, R.L. Reuben, and R. Ahmed, Meas. Sci. Technol. 22, 015703 (2010).

    Article  Google Scholar 

  5. D.E. Kramer, K.B. Yoder, and W.W. Gerberich, Philos. Mag. A 81, 2033 (2001).

    Article  Google Scholar 

  6. P. Dyjak and R.P. Singh, Exp. Mech. 46, 333 (2006).

    Article  Google Scholar 

  7. D.F. Bahr and W.W. Gerberich, J. Mater. Res. 13, 1065 (1998).

    Article  Google Scholar 

  8. S.K. Lawrence, D.F. Bahr, and H.M. Zbib, J. Mater. Res. 27, 3058 (2012).

    Article  Google Scholar 

  9. C.-K. Lin and C.C. Berndt, Surf. Coat. Technol. 102, 1 (1998).

    Article  Google Scholar 

  10. X. Li, Int. J. Mach. Tool Manuf. 42, 157 (2002).

    Article  Google Scholar 

  11. M. Shiwa, E. Weppelmann, D. Munz, M.V. Swain, and T. Kishi, J. Mater. Sci. 31, 5985 (1994).

    Article  Google Scholar 

  12. N. Ali, Q. Hua Fan, J. Grácio, E. Pereira, and W. Ahmed, Thin Solid Films 377-378, 193 (2000).

    Article  Google Scholar 

  13. N.I. Tymiak, A. Daugela, T.J. Wyrobek, and O.L. Warren, J. Mater. Res. 18, 784 (2003).

    Article  Google Scholar 

  14. J. Tomastik, R. Ctvrtlik, M. Drab, and J. Manak, Coatings 8, 196 (2018).

    Article  Google Scholar 

  15. J. Tomastik, R. Ctvrtlik, T. Ingr, J. Manak, and A. Opletalova, Sci. Rep. 8, 10428 (2018).

    Article  Google Scholar 

  16. V. Perfilyev, I. Lapsker, A. Laikhtman, and L. Rapoport, Tribol. Lett. 65, 24 (2017).

    Article  Google Scholar 

  17. V. Perfilyev, A. Moshkovich, I. Lapsker, and L. Rapoport, Tribol. Lett. 65, 41 (2017).

    Article  Google Scholar 

  18. Á.I. Hegyi, P.D. Ispánovity, M. Knapek, D. Tüzes, K. Máthis, F. Chmelík, Z. Dankházi, G. Varga, and I. Groma, Microsc. Microanal. 23, 1076 (2017).

    Article  Google Scholar 

  19. A.C. Fischer-Cripps, Nanoindentation (Berlin: Springer, 2004).

    Book  Google Scholar 

  20. W.W. Gerberich, S.K. Venkataraman, H. Huang, S.E. Harvey, and D.L. Kohlstedt, Acta Metall. Mater. 43, 1569 (1995).

    Article  Google Scholar 

  21. N.Q. Chinh, J. Gubicza, Z. Kovács, and J. Lendvai, J. Mater. Res. 19, 31 (2011).

    Article  Google Scholar 

  22. D.F. Bahr, D.E. Kramer, and W.W. Gerberich, Acta Mater. 46, 3605 (1998).

    Article  Google Scholar 

  23. A. Gouldstone, H.J. Koh, K.Y. Zeng, A.E. Giannakopoulos, and S. Suresh, Acta Mater. 48, 2277 (2000).

    Article  Google Scholar 

  24. C.A. Schuh, A.C. Lund, and T.G. Nieh, Acta Mater. 52, 5879 (2004).

    Article  Google Scholar 

  25. S. Suresh, T.G. Nieh, and B.W. Choi, Scr. Mater. 41, 951 (1999).

    Article  Google Scholar 

  26. T. Zhu and J. Li, Prog. Mater. Sci. 55, 710 (2010).

    Article  Google Scholar 

  27. N. Gane and F.P. Bowden, J. Appl. Phys. 39, 1432 (1968).

    Article  Google Scholar 

  28. B.D. Beake and S. Goel, Int. J. Refract. Met. Hard Mater. 75, 63 (2018).

    Article  Google Scholar 

  29. K.L. Johnson, Contact mechanics (Cambridge: Cambridge University Press, 1985).

    Book  Google Scholar 

  30. H. Hertz, Mathematik 92, 146 (1881).

    Google Scholar 

  31. C.A. Schuh and A.C. Lund, J. Mater. Res. 19, 2152 (2004).

    Article  Google Scholar 

  32. L. Brabec, P. Bohac, M. Stranyanek, R. Ctvrtlik, and M. Kocirik, Microporous Mesoporous Mater. 94, 226 (2006).

    Article  Google Scholar 

  33. T.C.T. Pham, H.S. Kim, and K.B. Yoon, Science 334, 1533 (2011).

    Article  Google Scholar 

  34. A. Tavolaro and E. Drioli, Adv. Mater. 11, 975 (1999).

    Article  Google Scholar 

  35. H.A. Kubavat, J. Shur, G. Ruecroft, D. Hipkiss, and R. Price, Pharm. Res. 29, 994 (2012).

    Article  Google Scholar 

  36. S. Zügner, K. Marquardt, and I. Zimmermann, Eur. J. Pharm. Biopharm. 62, 194 (2006).

    Article  Google Scholar 

  37. B.R. Lawn and M.V. Swain, J. Mater. Sci. 10, 113 (1975).

    Article  Google Scholar 

  38. K. Holmberg, H. Ronkainen, and A. Matthews, Ceram. Int. 26, 787 (2000).

    Article  Google Scholar 

  39. S.J. Bull, Surf. Coat. Technol. 50, 25 (1991).

    Article  Google Scholar 

  40. N. Schwarzer, Q.H. Duong, N. Bierwisch, G. Favaro, M. Fuchs, P. Kempe, B. Widrig, and J. Ramm, Surf. Coat. Technol. 206, 1327 (2011).

    Article  Google Scholar 

  41. J. Valli, U. Makela, A. Matthews, and V. Murawa, J. Vac. Sci. Technol. A A3, 2411 (1985).

    Article  Google Scholar 

  42. H. Jensen, U.M. Jensen, and G. Sorensen, Surf. Coat. Technol. 74–75, 781 (1995).

    Article  Google Scholar 

  43. J. Griffin and X. Chen, Int. J. Nanomanuf. 1, 189 (2006).

    Article  Google Scholar 

  44. C. Leone, G. Caprino, and I. de Iorio, Compos. Sci. Technol. 66, 233 (2006).

    Article  Google Scholar 

  45. B.D. Beake, L. Isern, J.L. Endrino, and G.S. Fox-Rabinovich, Wear 418–419, 102 (2019).

    Article  Google Scholar 

  46. B.D. Beake, J.F. Smith, A. Gray, G.S. Fox-Rabinovich, S.C. Veldhuis, and J.L. Endrino, Surf. Coat. Technol. 201, 4585 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support by the Project TH03020245 of the Technology Agency of the Czech Republic and the Operational Programme Research, Development and Education, Projects Nos. CZ.02.1.01/0.0/0.0/17_049/0008422 and CZ.02.1.01/0.0/0.0/16_019/0000754 of the Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Radim Ctvrtlik or Ben D. Beake.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ctvrtlik, R., Tomastik, J., Vaclavek, L. et al. High-Resolution Acoustic Emission Monitoring in Nanomechanics. JOM 71, 3358–3367 (2019). https://doi.org/10.1007/s11837-019-03700-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03700-8

Navigation