Skip to main content
Log in

Nano-rolling: Roller Speed-Dependent Morphological Evolution and Mechanical Properties Enhancement in Nanoscale Mg

  • New Developments in Nanomechanical Methods
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Economical processing of textured nanoscale metallic systems is highly sought after, as tuning of crystallographic orientations has a significant impact on their mechanical properties. However, due to constraints in instrument set-up and the high cost involved, there are no experimental investigations on understanding the rolling process and its underlying deformation mechanism at the nanoscale level. Here, we propose a deformation model of a futuristic “nano-rolling” technique and investigate the deformation mechanism of single-crystal Mg subjected to nano-rolling using molecular dynamics simulation. The simulation has efficiently captured the dynamic structural evolution of {1-101} twins and the ∑11 grain boundary at an atomic level during the rolling process. On varying the roller speeds, the results have shown that faster speeds facilitate higher ultimate tensile strength (UTS) due to dislocation entanglement in the twin domain, whereas slower roller speed facilitates formation of the {0001} basal plane stacking faults along with twin boundaries, which results in comparatively lower UTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.A. Mahmoud, D. O’Neil, and M.A. El-Sayed, Nano Lett. 14, 743 (2014).

    Google Scholar 

  2. Y. Zou, J.M. Wheeler, H. Ma, P. Okle, and R. Spolenak, Nano Lett. 17, 1569 (2017).

    Google Scholar 

  3. B.H. An, I.T. Jeon, J.H. Seo, J.P. Ahn, O. Kraft, I.S. Choi, and Y.K. Kim, Nano Lett. 16, 3500 (2016).

    Google Scholar 

  4. G. Wu, K.C. Chan, L. Zhu, L. Sun, and J. Lu, Nature 545, 80 (2017).

    Google Scholar 

  5. T. Chandel, V. Thakur, M.B. Zaman, S.K. Dwivedi, and R. Poolla, Mater. Lett. 212, 279 (2018).

    Google Scholar 

  6. E. Chicardi, C.F. Gutiérrez-González, M.J. Sayagués, and C. Garcia-Garrido, Mater. Des. 145, 88 (2018).

    Google Scholar 

  7. V.R. Akshay, B. Arun, G. Mandal, and M. Vasundhara, Phys. Chem. Chem. Phys. 21, 2519 (2019).

    Google Scholar 

  8. H. Li, P. Tian, H. Lu, W. Jia, H. Du, X. Zhang, Q. Li, and Y. Tian, ACS Appl. Mater. Interfaces 9, 5638 (2017).

    Google Scholar 

  9. R. Valiev, Nat. Mater. 3, 511 (2004).

    Google Scholar 

  10. F. Xu, F. Fang, Y. Zhu, and X. Zhang, Nanoscale Res. Lett. 12, 289 (2017).

    Google Scholar 

  11. M. Yoshino, N. Umehara, and S. Aravindan, Wear 266, 581 (2009).

    Google Scholar 

  12. M. Kumar, A. Kumar, and A.C. Abhyankar, ACS Appl. Mater. Interfaces 7, 3571 (2015).

    Google Scholar 

  13. S. Suwas and N.P. Gurao, J. Indian Inst. Sci. 88, 151 (2008).

    Google Scholar 

  14. X. Yu, R. Zhang, D. Weldon, S.C. Vogel, J. Zhang, D.W. Brown, Y. Wang, H.M. Reiche, S. Wang, S. Du, C. Jin, and Y. Zhao, Sci. Rep. 5, 12552 (2015).

    Google Scholar 

  15. L. Jinlong and L. Hongyun, Appl. Surf. Sci. 317, 125 (2014).

    Google Scholar 

  16. M. Naseri, M. Reihanian, and E. Borhani, Mater. Sci. Eng., A 673, 288 (2016).

    Google Scholar 

  17. G.D. Sathiaraj, P.P. Bhattacharjee, C.W. Tsai, and J.W. Yeh, Intermetallics 69, 1 (2016).

    Google Scholar 

  18. G. Zhou, M.K. Jain, P. Wu, Y. Shao, D. Li, and Y. Peng, Int. J. Plast 79, 19 (2016).

    Google Scholar 

  19. A.A. Luo, JOM 54, 42 (2002).

    Google Scholar 

  20. A. Orozco-Caballero, D. Lunt, J.D. Robson, and J.Q. da Fonseca, Acta Mater. 133, 367 (2017).

    Google Scholar 

  21. Z. Wu and W.A. Curtin, Nature 526, 62 (2015).

    Google Scholar 

  22. M.A. Kumar, A.K. Kanjarla, S.R. Niezgoda, R.A. Lebensohn, and C.N. Tomé, Acta Mater. 84, 349 (2015).

    Google Scholar 

  23. J. Jeong, M. Alfreider, R. Konetschnik, D. Kiener, and S.H. Oh, Acta Mater. 158, 407 (2018).

    Google Scholar 

  24. J. Peng, Z. Zhang, Z. Liu, Y. Li, P. Guo, W. Zhou, and Y. Wu, Sci. Rep. 8, 4196 (2018).

    Google Scholar 

  25. L. Jiang, M.T. Pérez-Prado, P.A. Gruber, E. Arzt, O.A. Ruano, and M.E. Kassner, Acta Mater. 56, 1228 (2008).

    Google Scholar 

  26. L.B. Tong, J.B. Zhang, Q.X. Zhang, Z.H. Jiang, C. Xu, S. Kamado, D.P. Zhang, J. Meng, L.R. Cheng, and H.J. Zhang, Mater. Charact. 115, 1 (2016).

    Google Scholar 

  27. B. Deng, P.C. Hsu, G. Chen, B.N. Chandrashekar, L. Liao, Z. Ayitimuda, J. Wu, J. Guo, L. Lin, Y. Zhou, M. Aisijiang, Q. Xie, Y. Cui, Z. Liu, and H. Peng, Nano Lett. 15, 4206 (2015).

    Google Scholar 

  28. D. Goswami, J.C. Munera, A. Pal, B. Sadri, C.L.P. Scarpetti, and R.V. Martinez, Nano Lett. 18, 3616 (2018).

    Google Scholar 

  29. K.V. Reddy, S. Pal, and J. Non-Cryst, Solids 471, 243 (2017).

    Google Scholar 

  30. K.V. Reddy, C. Deng, and S. Pal, Acta Mater. 164, 347 (2019).

    Google Scholar 

  31. S.P. Coleman, M.M. Sichani, and D.E. Spearot, JOM 66, 408 (2014).

    Google Scholar 

  32. A. Kazemi and S. Yang, JOM 71, 1209 (2019).

    Google Scholar 

  33. K.V. Reddy and S. Pal, Steel Res. Int. (2019). https://doi.org/10.1002/srin.201800636.

    Article  Google Scholar 

  34. K.V. Reddy and S. Pal, J. Appl. Phys. 125, 095101 (2019).

    Google Scholar 

  35. J. Yuan, K. Zhang, T. Li, X. Li, Y. Li, M. Ma, P. Luo, G. Luo, and Y. Hao, Mater. Des. 40, 257 (2012).

    Google Scholar 

  36. X. Hua, F. Lv, H. Qiao, P. Zhang, Q.Q. Duan, Q. Wang, P.D. Wu, S.X. Li, and Z.F. Zhang, Mater. Sci. Eng., A 618, 523 (2014).

    Google Scholar 

  37. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Google Scholar 

  38. S.R. Wilson and M.I. Mendelev, J. Chem. Phys. 144, 144707 (2016).

    Google Scholar 

  39. D.J. Evans and B.L. Holian, J. Chem. Phys. 83, 4069 (1985).

    Google Scholar 

  40. J.D. Honeycutt and H.C. Andersen, J. Phys. Chem. 91, 4950 (1987).

    Google Scholar 

  41. A. Stukowski, V.V. Bulatov, and A. Arsenlis, Model. Simul. Mater. Sci. Eng. 20, 085007 (2012).

    Google Scholar 

  42. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).

    MathSciNet  Google Scholar 

  43. J.C. Zhang, C. Chen, Q.X. Pei, Q. Wan, W.X. Zhang, and Z.D. Sha, Mater. Des. 77, 1 (2015).

    Google Scholar 

  44. D. Faken and H. Jónsson, Comput. Mater. Sci. 2, 279 (1994).

    Google Scholar 

  45. H.R. Wenk, I. Lonardelli, and D. Williams, Acta Mater. 52, 1899 (2004).

    Google Scholar 

  46. S. Sandlöbes, M. Friák, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei, L.F. Zhu, J. Neugebauer, and D. Raabe, Acta Mater. 60, 3011 (2012).

    Google Scholar 

  47. K.V. Reddy and S. Pal, J. Mol. Model. 24, 277 (2018).

    Google Scholar 

  48. A. Ostapovets, P. Šedá, A. Jäger, and P. Lejček, Scr. Mater. 64, 470 (2011).

    Google Scholar 

  49. R.O. Ritchie, Nat. Mater. 10, 817 (2011).

    Google Scholar 

  50. Y. Wang, M. Chen, F. Zhou, and E. Ma, Nature 419, 912 (2002).

    Google Scholar 

  51. C.E. Carlton and P.J. Ferreira, Acta Mater. 55, 3749 (2007).

    Google Scholar 

  52. M. Meraj, N. Yedla, and S. Pal, Mater. Lett. 169, 265 (2016).

    Google Scholar 

  53. Y.D. Wang, R.L. Peng, X.L. Wang, and R.L. McGreevy, Acta Mater. 50, 1717 (2002).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Computer Centre of National Institute of Technology Rourkela for providing the high-performance computing facility (HPCF) necessary for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehanshu Pal.

Ethics declarations

Conflict of interest

Both authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 442 kb)

Supplementary material 2 (AVI 9110 kb)

Supplementary material 3 (AVI 10396 kb)

Supplementary material 4 (AVI 10282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, K.V., Pal, S. Nano-rolling: Roller Speed-Dependent Morphological Evolution and Mechanical Properties Enhancement in Nanoscale Mg. JOM 71, 3407–3416 (2019). https://doi.org/10.1007/s11837-019-03699-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03699-y

Navigation