Skip to main content
Log in

A Novel Setup for In Situ Monitoring of Thermomechanically Cycled Thin Film Metallizations

  • New Developments in Nanomechanical Methods
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A novel experimental setup is presented to thermomechanically cycle metallizations in situ and, at the same time, study the progress of gradual changes in their microstructure using scanning electron microscopy. Very high heating rates are achieved by the use of special semiconductor test devices provided with active heating. The functionality of the setup is shown by one demonstrative experiment, where line-shaped copper metallization on a silicon substrate was subjected to 12,000 thermomechanical stress cycles, characterized by heating durations of 200 µs and temperature differences of 300°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Khazaka, L. Mendizabal, D. Henry, and R. Hanna, IEEE Trans. Power Electron. 30, 2456 (2015). https://doi.org/10.1109/tpel.2014.2357836.

    Article  Google Scholar 

  2. H. Wang, M. Liserre, and F. Blaabjerg, IEEE Ind. Electron. Mag. 7, 17 (2013). https://doi.org/10.1109/mie.2013.2252958.

    Article  Google Scholar 

  3. W. Kanert, Microelectron. Reliab. 52, 2336 (2012). https://doi.org/10.1016/j.microrel.2012.06.031.

    Article  Google Scholar 

  4. M. Glavanovics, T. Detzel, and K. Weber, in 34th ESSDERC 2004, Proceedings of European Solid-State Device Research Conference (2004) https://doi.org/10.1109/essder.2004.1356542.

  5. K.N. Subramanian, A. Lee, S. Choi, and P. Sonje, J. Electron. Mater. 30, 372 (2001). https://doi.org/10.1007/s11664-001-0046-7.

    Article  Google Scholar 

  6. S. Russo, R. Letor, O. Viscuso, L. Torrisi, and G. Vitali, Microelectron. Reliab. 42, 1617 (2002). https://doi.org/10.1016/s0026-2714(02)00200-7.

    Article  Google Scholar 

  7. M. Ciappa, Microelectron. Reliab. 42, 653 (2002). https://doi.org/10.1016/s0026-2714(02)00042-2.

    Article  Google Scholar 

  8. M. Nelhiebel, R. Illing, T. Detzel, S. Wöhlert, B. Auer, S. Lanzerstorfer, M. Rogalli, W. Robl, S. Decker, J. Fugger, and M. Ladurner, Microelectron. Reliab. 53, 1745 (2013). https://doi.org/10.1016/j.microrel.2013.07.123.

    Article  Google Scholar 

  9. M. Nelhiebel, R. Illing, C. Schreiber, S. Wöhlert, S. Lanzerstorfer, M. Ladurner, C. Kadow, S. Decker, D. Dibra, H. Unterwalcher, M. Rogalli, W. Robl, T. Herzig, M. Poschgan, M. Inselsbacher, M. Glavanovics, and S. Fraissé, Microelectron. Reliab. 51, 1927 (2011). https://doi.org/10.1016/j.microrel.2011.06.042.

    Article  Google Scholar 

  10. M.D. Thouless, J. Gupta, and J.M.E. Harper, J. Mater. Res. 8, 1845 (1993). https://doi.org/10.1557/jmr.1993.1845.

    Article  Google Scholar 

  11. S. Wurster, S. Bigl, M.J. Cordill, and D. Kiener, Microelectron. Eng. 167, 110 (2017). https://doi.org/10.1016/j.mee.2016.08.004.

    Article  Google Scholar 

  12. P.A. Flinn, D.S. Gardner, and W.D. Nix, IEEE Trans. Electron Devices 34, 689 (1987). https://doi.org/10.1109/t-ed.1987.22981.

    Article  Google Scholar 

  13. H.J. Frost and M.F. Ashby, Deformation-mechanism maps: The plasticity and creep of metals and ceramics (Oxford: Pergamon Press, 1982).

    Google Scholar 

  14. H. Köck, V. Košel, C. Djelassi, M. Glavanovics, and D. Pogany, Microelectron. Reliab. 49, 1132 (2009). https://doi.org/10.1016/j.microrel.2009.06.032.

    Article  Google Scholar 

  15. T. Aichinger, M. Nelhiebel, S. Einspieler, and T. Grasser, IEEE Trans. Device Mater. Reliab. 10, 3 (2010). https://doi.org/10.1109/tdmr.2009.2033467.

    Article  Google Scholar 

  16. T. Islam, J. Zechner, M. Bernardoni, M. Nelhiebel, and R. Pippan, Rev. Sci. Instrum. 88, 024709 (2017). https://doi.org/10.1063/1.4975378.

    Article  Google Scholar 

  17. W. Muth and W. Walter, Microelectron. Reliab. 44, 1251 (2004). https://doi.org/10.1016/j.microrel.2004.04.011.

    Article  Google Scholar 

  18. M. Zhang, Y. Yoshihisa, K. Furuya, Y. Imai, K. Hatasako, T. Ipposhi, and S. Maegawa, Jpn. J. Appl. Phys. 53, 04EP12 (2014). https://doi.org/10.7567/jjap.53.04ep12

    Article  Google Scholar 

  19. T. Smorodin, J. Wilde, P. Alpern, M. Stecher, in Proceedings on 45th Annual 2007 IEEE International Reliability Physics Symposium (2007). https://doi.org/10.1109/relphy.2007.369939

  20. H.V. Nguyen, C. Salm, J. Vroemen, J. Voets, B. Krabbenborg, J. Bisschop, A.J. Mouthaan, and F.G. Kuper, in Proceedings of the 9th International Symposium on Physical &Failure Analysis of Integrated Circuits (2002). https://doi.org/10.1109/ipfa.2002.1025632

  21. W. Boyes, Instrumentation reference book, 4th ed. (Butterworth-Heinemann: Amsterdam, 2010).

    Google Scholar 

  22. P. Ullmann, Master thesis. Vienna University of Technology (2017)

Download references

Acknowledgements

This work was funded by the Austrian Research Promotion Agency (FFG, Project No. 863947).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Moser.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 753 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moser, S., Zernatto, G., Kleinbichler, M. et al. A Novel Setup for In Situ Monitoring of Thermomechanically Cycled Thin Film Metallizations. JOM 71, 3399–3406 (2019). https://doi.org/10.1007/s11837-019-03695-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03695-2

Navigation