Skip to main content
Log in

Crystal Plasticity Modeling of Void Growth on Grain Boundaries in Ni-Based Superalloys

  • Crystal Orientation Dependence of Mechanical and Thermal Properties in Functional Nanomaterials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this work, we explore the effect of misorientation angles of crystal orientations between two grains along the grain boundary (GB) on void growth behavior in polycrystalline Ni-based superalloys by using a crystal plasticity finite element method. Quantitative analysis is conducted to study the coupled roles of the crystal orientation and stress triaxiality in void growth in bicrystals. Based on our simulation results, we find that, as the main loading axis perpendicular to the GB, voids grow more slowly on tilt GBs in bicrystals than those in single and bicrystal samples with twist GBs, while the void growth in single- and bicrystal samples with twist GBs exhibited almost the same rate and increased with the stress triaxiality levels. The interaction between two crystals bonded with the GB activates the effective Schmid factors in each crystal, which results in asymmetric distribution of the equivalent plastic strain around the void and induces distinct irregularly shaped voids during deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge: Cambridge University Press, 2008), pp. 217–271.

    Google Scholar 

  2. F. Theska, A. Stanojevic, B. Oberwinkler, S.P. Ringer, and S. Primig, Acta Mater. 156, 116 (2018).

    Article  Google Scholar 

  3. Z. Tarzimoghadam, D. Ponge, J. Klöwer, and D. Raabe, Acta Mater. 128, 365 (2017).

    Article  Google Scholar 

  4. T. Gibbons and B. Hopkins, Met. Sci. 18, 273 (1984).

    Article  Google Scholar 

  5. G. Zhu, F. Liu, X. Li, J. Pang, Z. Zhang, P. Li, Y. Zhou, and Z. Zhang, Adv. Eng. Mater. 21, 1800856 (2019).

    Article  Google Scholar 

  6. J.R. Rice and D.M. Tracey, J. Mech. Phys. Solid 17, 201 (1969).

    Article  Google Scholar 

  7. A.L. Gurson, J. Eng. Mater. Technol. 99, 2 (1977).

    Article  Google Scholar 

  8. V. Tvergaard and A. Needleman, Acta Metall. 32, 157 (1984).

    Article  Google Scholar 

  9. M. Kuna and D. Sun, Int. J. Fatigue 81, 235 (1996).

    Google Scholar 

  10. T. Pardoen, I. Doghri, and F. Delannay, Acta Mater. 46, 541 (1998).

    Article  Google Scholar 

  11. Y. Shi, Eng. Fract. Mech. 34, 901 (1989).

    Article  Google Scholar 

  12. T. Oregan, D. Quinn, M. Howe, and P. McHugh, Comput. Mech. 20, 115 (1997).

    Article  Google Scholar 

  13. D. Quinn, P. Connolly, M. Howe, and P. McHugh, Int. J. Mech. Sci. 39, 173 (1997).

    Article  Google Scholar 

  14. J.Y. Shu, Int. J. Plast 14, 1085 (1998).

    Article  Google Scholar 

  15. V. Tvergaard and C. Niordson, Int. J. Plast. 20, 107 (2004).

    Article  Google Scholar 

  16. J. Wen, Y. Huang, K. Hwang, C. Liu, and M. Li, Int. J. Plast. 21, 381 (2005).

    Article  Google Scholar 

  17. V. Orsini and M. Zikry, Int. J. Plast. 17, 1393 (2001).

    Article  Google Scholar 

  18. G. Potirniche, J. Hearndon, M. Horstemeyer, and X. Ling, Int. J. Plast. 22, 921 (2006).

    Article  Google Scholar 

  19. Q. Yu, N. Hou, and Z. Yue, Comput. Mater. Sci. 48, 597 (2010).

    Article  Google Scholar 

  20. E.B. Marin, Report No. SAND2006-4170, Sandia National Laboratories, 2006.

  21. A. Cruzado, B. Gan, M. Jiménez, D. Barba, K. Ostolaza, A. Linaza, J. Molina-Aldareguia, J. Llorca, and J. Segurado, Acta Mater. 98, 242 (2015).

    Article  Google Scholar 

  22. C. Tome, G. Canova, U. Kocks, N. Christodoulou, and J. Jonas, Acta Metall. 32, 1637 (1984).

    Article  Google Scholar 

  23. A. Srivastava and A. Needleman, Mech. Mater. 90, 10 (2015).

    Article  Google Scholar 

  24. V.V. Bulatov, B.W. Reed, and M. Kumar, Acta Mater. 65, 161 (2014).

    Article  Google Scholar 

  25. A. Srivastava and A. Needleman, Model. Simul. Mater. Sci. Eng. 20, 035010 (2012).

    Article  Google Scholar 

  26. S.K. Yerra, C. Tekoğlu, F. Scheyvaerts, L. Delannay, P. Van Houtte, and T. Pardoen, Int. J. Solids Struct. 47, 1016 (2010).

    Article  Google Scholar 

  27. C. Ling, S. Forest, J. Besson, B. Tanguy, and F. Latourte, Int. J. Solids Struct. 134, 43 (2018).

    Article  Google Scholar 

  28. K.S. Zhang, J.B. Bai, and D. François, Int. J. Solids Struct. 38, 5847 (2001).

    Article  Google Scholar 

  29. M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials (Cambridge: Cambridge University Press, 2008), pp. 381–392.

    Book  Google Scholar 

  30. R.J. Asaro, Adv. Appl. Mech. 23, 1 (1983).

    Article  Google Scholar 

  31. I.J. Beyerlein and L.S. Tóth, Prog. Mater. Sci. 54, 427 (2009).

    Article  Google Scholar 

  32. X. Zhang, Y. Mu, M. Dodaran, S. Shao, D. Moldovan, and W.J. Meng, Acta Mater. 160, 1 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the DOE-NETL Crosscutting Research Program (No. FE0031554).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caizhi Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Sakidja, R., Ching, WY. et al. Crystal Plasticity Modeling of Void Growth on Grain Boundaries in Ni-Based Superalloys. JOM 71, 3859–3868 (2019). https://doi.org/10.1007/s11837-019-03694-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03694-3

Navigation