Skip to main content
Log in

Describing the Effective Conductivity of Two-Phase and Multiphase Materials via Weighted Means of Bounds and General Power Means

  • Modeling and Simulation of Composite Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The theoretical status of empirical means (based on the heuristic Wyllie–Southwick and Krischer models) of the upper and lower Wiener bounds (i.e., the parallel and series model) for describing the effective thermal conductivity of multiphase materials is clarified, and other useful fit relations are recalled (geometric weighted mean) or newly proposed (generalized sigmoidal mean). All these relations, as well as the general power mean, are compared with the Hashin–Shtrikman bounds, and the admissible fit parameter ranges are determined for materials with isotropic microstructures. It is shown that weighted means result in curves with inflection points, but with different changes in curvature, whereas the curves of general power means do not exhibit inflection points at all. For materials with isotropic microstructure it is recommended to apply the fixed-parameter weighted means and sigmoidal means to Hashin–Shtrikman bounds instead of the Wiener bounds, as is common practice so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O. Wiener, Abh. Math. Phys. Klasse Königl. Sächs. Ges. Wissensch. 32, 509 (1912).

    Google Scholar 

  2. Z. Hashin and S. Shtrikman, J. Appl. Phys. 33, 3125 (1962).

    Article  Google Scholar 

  3. S. Torquato, Random Heterogeneous Materials—Microstructure and Macroscopic Properties (New York: Springer, 2002), pp. 403–646.

    Book  Google Scholar 

  4. J.C. Maxwell, A Treatise on Electricity and Magnetism, vol. 1 (Clarendon Press, Oxford, 1873/reprint Dover, New York, 1954), pp. 435–449.

  5. A. Eucken, Die Wärmeleitfähigkeit keramischer feuerfester Stoffe – ihre Berechnung aus der Wärmeleitfähigkeit der Bestandteile (Berlin: VDI Verlag, 1932), pp. 1–16.

    Google Scholar 

  6. D.A.G. Bruggeman, Ann. Phys. Leipz. 24, 636 (1935).

    Article  Google Scholar 

  7. R. Landauer, J. Appl. Phys. 23, 779 (1952).

    Article  Google Scholar 

  8. N. Phan-Thien and D.C. Pham, Int. J. Eng. Sci. 38, 73 (2000).

    Article  Google Scholar 

  9. G. Tichá, W. Pabst, and D.S. Smith, J. Mater. Sci. 40, 5045 (2005).

    Article  Google Scholar 

  10. W. Pabst and E. Gregorová, Mater. Sci. Technol. 31, 1801 (2015).

    Article  Google Scholar 

  11. W. Pabst, T. Uhlířová, E. Gregorová, and A. Wiegmann, J. Eur. Ceram. Soc. 38, 2570 (2018).

    Article  Google Scholar 

  12. T. Uhlířová, V. Nečina, and W. Pabst, J. Eur. Ceram. Soc. 38, 3004 (2018).

    Article  Google Scholar 

  13. W. Pabst, T. Uhlířová, E. Gregorová, and A. Wiegmann, J. Eur. Ceram. Soc. 38, 2694 (2018).

    Article  Google Scholar 

  14. W. Pabst, T. Uhlířová, E. Gregorová, and A. Wiegmann, J. Eur. Ceram. Soc. 38, 4026 (2018).

    Article  Google Scholar 

  15. T. Uhlířová and W. Pabst, Scripta Mater. 159, 1 (2019).

    Article  Google Scholar 

  16. T. Uhlířová and W. Pabst, Ceram. Int. 45, 954 (2019).

    Article  Google Scholar 

  17. W. Pabst and E. Gregorová, Ceram. Silik. 48, 14 (2004).

    Google Scholar 

  18. S.C. Ji, Q. Wang, B. Xia, and D. Marcotte, J. Struct. Geol. 26, 1377 (2004).

    Article  Google Scholar 

  19. S.C. Ji, Q. Gu, and B. Xia, J. Mater. Sci. 41, 1757 (2006).

    Article  Google Scholar 

  20. O. Krischer, Die wissenschaftlichen Grundlagen der Trockentechnik (Berlin: Springer, 1963), pp. 223–232.

    Book  Google Scholar 

  21. M.R.J. Wyllie and P.F. Southwick, J. Petrol. Technol. 6, 44 (1954).

    Article  Google Scholar 

  22. I. Amara, A. Mazioud, I. Boulaoued, and A. Mhimid, Int. J. Heat Technol. 35, 576 (2017).

    Article  Google Scholar 

  23. T. Renaud, P. Briery, J. Andrieu, and M. Laurent, J. Food Eng. 15, 83 (1992).

    Article  Google Scholar 

  24. B. Dietrich, G. Schell, E.C. Bucharsky, R. Oberacker, M.J. Hoffmann, W. Schabel, M. Kind, and H. Martin, Int. J. Heat Mass Transf. 53, 196 (2010).

    Article  Google Scholar 

  25. M.S. Rahman and X.D. Chen, Drying Technol. 13, 2153 (1995).

    Article  Google Scholar 

  26. Z.B. Maroulis, M.K. Krokida, and M.S. Rahman, J. Food Eng. 52, 47 (2002).

    Article  Google Scholar 

  27. N. Hamdani, J.K. Monteau, and A. Le Bail, Int. J. Refrig 26, 809 (2003).

    Article  Google Scholar 

  28. J.F. Wang, J.K. Carson, M.F. North, and D.J. Cleland, Int. J. Heat Mass Transf. 49, 3075 (2006).

    Article  Google Scholar 

  29. G.W. Milton, J. Appl. Phys. 52, 5294 (1981).

    Article  Google Scholar 

  30. K.A. Lurie and A.V. Cherkaev, Proc. R. Soc. Edinb. 104A, 21 (1986).

    Article  Google Scholar 

  31. J.K. Carson, J. Food Eng. 74, 430 (2006).

    Article  Google Scholar 

  32. W. Woodside and J.H. Messmer, J. Appl. Phys. 32, 1688 (1961).

    Article  Google Scholar 

  33. W. Woodside and J.H. Messmer, J. Appl. Phys. 32, 1699 (1961).

    Article  Google Scholar 

  34. D.R. Chaudhary and R.C. Bhandari, Br. J. Appl. Phys. (J. Phys. D) 1, 815 (1968).

    Article  Google Scholar 

  35. D.R. Chaudhary and R.C. Bhandari, Br. J. Appl. Phys. (J. Phys. D) 2, 609 (1969).

    Article  Google Scholar 

  36. W. Pabst and E. Gregorová, J. Phys: Conf. Ser. 395, 012021 (2012).

    Google Scholar 

Download references

Acknowledgements

This work is part of the project “Partially and fully sintered ceramics—processing, microstructure, properties, modeling and sintering theory” (GA18-17899S), supported by the Czech Science Foundation (GAČR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willi Pabst.

Ethics declarations

Conflict of interest

No data were used for the research described in the article. The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pabst, W., Hříbalová, S. Describing the Effective Conductivity of Two-Phase and Multiphase Materials via Weighted Means of Bounds and General Power Means. JOM 71, 4005–4014 (2019). https://doi.org/10.1007/s11837-019-03693-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03693-4

Navigation