Skip to main content

Advertisement

Log in

Preparation of Sodium Pyroantimonate from Antimony Trioxide by Pressure Oxidation in NaOH Solution

  • Urban Mining: Characterization and Recycling of Solid Wastes
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A technical route for preparing sodium pyroantimonate by pressure oxidation in NaOH solution is proposed. The E-pH diagram of the Sb-H2O system shows that Sb(III) from antimony trioxide can be oxidized to Sb(V) to prepare sodium pyroantimonate under different alkaline concentrations. In the direct pressure oxidation technique, the product was doped with antimony trioxide due to the diffusion effect. By comparison, the technique of complex leaching-pressure oxidation could prepare an eligible product, which presented regular hexahedral morphology. Nevertheless, sodium pyroantimonate transformed to NaSbO3 at excessive temperature. The sodium antimonite solution prepared in the leaching process contained 18 g/L Sb. The antimony precipitation ratio in the pressure oxidation process increased with the stirring speed and oxygen partial pressure. Under the optimum conditions of temperature of 150°C, oxygen partial pressure of 2.0 MPa, stirring speed of 1000 rpm, and reaction time of 2 h, the antimony precipitation ratio was 97.70%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.C. Zhao, Antimony (Beijing: Metallurgical Industry Press, 1987), pp. 70–85.

    Google Scholar 

  2. C.G. Anderson, Chem. Erde 72, 3 (2012).

    Article  Google Scholar 

  3. R. Binious, C.J. Carmalt, and I.P. Parkin, Polyhedron 25, 15 (2006).

    Google Scholar 

  4. W.Y. Shu, Nonferrous Metal Fine Chemical Products Production and Application (Changsha: Central South University of Technology Press, 1995), pp. 12–16.

    Google Scholar 

  5. Y.T. Liang and N.Y. Zhong, Inorg. Salt Ind. 1, 14 (1991).

    Google Scholar 

  6. O. Celep, İ. Alp, and H. Deveci, Hydrometallurgy 105, 234 (2011).

    Article  Google Scholar 

  7. S. Ubaldini, F. Veglio, P. Fornari, and C. Abbruzzese, Hydrometallurgy 57, 187 (2000).

    Article  Google Scholar 

  8. Y.S. Tan, Hunan Nonferrous Met. 11, 34 (1995).

    MathSciNet  Google Scholar 

  9. T.Z. Yang, Q.L. Lai, J.J. Tang, and G. Chu, J. Cent. South Univ. Technol. (Engl. Ed.) 2, 107 (2002).

    Article  Google Scholar 

  10. X.X. Ma, K.L. Yao, and J.G. Wu, Inorg. Salt Ind. 5, 4 (1995).

    Google Scholar 

  11. X.C. Liu, Rare Met. Carbides 113, 135 (1993).

    Google Scholar 

  12. K.X. Jiang, Pressure Hydrometallurgy (Beijing: Metallurgical Industry Press, 2016), pp. 1–7.

    Google Scholar 

  13. D.C. Zhang, Q.K. Xiao, W.F. Liu, L. Chen, T.Z. Yang, and Y.N. Liu, Hydrometallurgy 151, 91 (2015).

    Article  Google Scholar 

  14. T.Z. Yang, H.B. Ling, D.C. Zhang, Y.T. Guo, W.F. Liu, L. Chen, and S. Rao, Int. J. Miner. Process. 166, 37 (2017).

    Article  Google Scholar 

  15. T.Z. Yang, S. Rao, W.F. Liu, D.C. Zhang, and L. Chen, Hydrometallurgy 169, 571 (2017).

    Article  Google Scholar 

  16. J.A. Dean, Lange’s Handbook of Chemistry, 15th ed. (Beijing: Science Press, 2003), p. 6.

    Google Scholar 

  17. H.G. Li, Metallurgical Principle (Beijing: Science Press, 2005), pp. 325–330.

    Google Scholar 

  18. J.S. Wang, Hunan Nonferrous Met. 7, 240 (1991).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Key Research and Development Program of China (No. 2018YFC1901604), Young Scientists Fund of National Natural Science Foundation of China (Grant No. 51404296), and Postdoctoral Science Foundation of China (Grant No. 2016M602427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhang, K., Zhang, D. et al. Preparation of Sodium Pyroantimonate from Antimony Trioxide by Pressure Oxidation in NaOH Solution. JOM 71, 3688–3695 (2019). https://doi.org/10.1007/s11837-019-03657-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03657-8

Navigation