, Volume 71, Issue 9, pp 3142–3150 | Cite as

Investigation of Magnetic Properties of γ-Fe2O3 NP-Decorated Carbon Nanostructured Mats

  • Hammad Younes
  • Md Mahfuzur RahmanEmail author
  • George Ni
  • Amal Al Ghaferi
  • Rashid Abu Al Rub
  • Ibrahim Bsoul
Advances in Processing, Manufacturing, and Applications of Magnetic Materials


It has been experimentally demonstrated that a carbon nanostructure (CNS)-based structure, called CNS mats, can yield superior magnetic properties. The structure is obtained by decorating CNS with γ-Fe2O3 nanoparticles (NPs) in a three-dimensional (3D) network structure. γ-Fe2O3 NPs are coated on the CNS, resulting in enhanced magnetic properties. The experimental characterization and theoretical analysis reveal that CNS mats decorated with γ-Fe2O3 NPs show superior magnetic properties compared with pristine CNS, as a result of the homogeneous dispersion of γ-Fe2O3 NPs and the highly aligned structure of the CNS. The coercive field (Hc), saturation magnetization (Ms), and remanent magnetization (Mr) were found to be 126 Oe, 22.3 emu/g, and 7.15 emu/g, respectively. In addition, scanning electron microscopy (SEM) and atomic force microscopy (AFM) characterization showed that the carbon nanotubes (CNTs) in each CNS flake within the CNS mat remained well aligned and formed an interconnected 3D network structure. This results in a robust porous structure with high electrical conductivity. Thermogravimetric analysis (TGA) revealed that the presence of the γ-Fe2O3 NPs provides a protective layer for the CNS and results in good thermal stability. The fabricated ultrathin CNS mat offers superior magnetic and electrical performance, making it an attractive candidate for microwave absorption, along with other applications such as electromagnetic shielding, sensors, lithium-ion batteries, and polymer composites.



The authors gratefully thank Dr. Florent for help with TEM. Dr. Amal would like to thank Masdar Institute of Science and Technology for financial support.


  1. 1.
    S. Iijima, Nature 354, 56 (1991).CrossRefGoogle Scholar
  2. 2.
    M.S. Dresselhaus, Annu. Rev. Mater. Sci. 27, 1 (1997).CrossRefGoogle Scholar
  3. 3.
    L. Liu, A.H. Barber, S. Nuriel, and H.D. Wagner, Adv. Funct. Mater. 15, 975 (2005).CrossRefGoogle Scholar
  4. 4.
    S. Berber, Y.K. Kwon, and D. Tománek, Phys. Rev. Lett. 84, 4613 (2000).CrossRefGoogle Scholar
  5. 5.
    S. Hong and S. Myung, Nat. Nanotechnol. 2, 207 (2007).CrossRefGoogle Scholar
  6. 6.
    T. Dürkop, S. Getty, E. Cobas, and M. Fuhrer, Nano Lett. 4, 35 (2004).CrossRefGoogle Scholar
  7. 7.
    R.H. Baughman, A.A. Zakhidov, and W.A. De Heer, Science 297, 787 (2002).CrossRefGoogle Scholar
  8. 8.
    M.S. Dresselhaus, Nat. Mater. 3, 665 (2004).CrossRefGoogle Scholar
  9. 9.
    H. Wang, L. Cao, S. Yan, N. Huang, and Z. Xiao, Mater. Sci. Eng. B 164, 191 (2009).CrossRefGoogle Scholar
  10. 10.
    E. Camponeschi, R. Vance, M. Al-Haik, H. Garmestani, and R. Tannenbaum, Carbon 45, 2037 (2007).CrossRefGoogle Scholar
  11. 11.
    Q. Liao, J. Sun, and L. Gao, Colloids Surf. A Physicochem. Eng. Asp. 345, 95 (2009).CrossRefGoogle Scholar
  12. 12.
    P. Gonnet, Z. Liang, E.S. Choi, R.S. Kadambala, C. Zhang, J.S. Brooks, B. Wang, and L. Kramer, Curr. Appl. Phys. 6, 119 (2006).CrossRefGoogle Scholar
  13. 13.
    N.F. Colaneri and L. Schacklette, IEEE Trans. Instrum. Meas. 41, 291 (1992).CrossRefGoogle Scholar
  14. 14.
    N. Das, D. Khastgir, T. Chaki, and A. Chakraborty, Compos. A Appl Sci. Manuf. 31, 1069 (2000).CrossRefGoogle Scholar
  15. 15.
    R. Che, C. Zhi, C. Liang, and X. Zhou, Appl. Phys. Lett. 88, 033105 (2006).CrossRefGoogle Scholar
  16. 16.
    M.-S. Cao, X.L. Shi, X.Y. Fang, H.B. Jin, Z.L. Hou, W. Zhou, and Y.J. Chen, Appl. Phys. Lett. 91, 203110 (2007).CrossRefGoogle Scholar
  17. 17.
    D. Liu, J. Zhu, S. Ivaturi, Y. He, S. Wang, J. Wang, S. Zhang, M.A. Willis, and F.S. Boi, RSC Adv. 8, 13820 (2018).CrossRefGoogle Scholar
  18. 18.
    H. Terrones, F. López-Urías, E. Munoz-Sandoval, J. Rodríguez-Manzo, A. Zamudio, A. Elías, and M. Terrones, Solid State Sci. 8, 303 (2006).CrossRefGoogle Scholar
  19. 19.
    J. Zhu, D. Liu, J. Wang, H. Yi, S. Wang, J. Wen, M. Willis, Y. Hou, J. Borowiec, and F. Boi, RSC Adv. 7, 20604 (2017).CrossRefGoogle Scholar
  20. 20.
    J. Guo, M. Lan, S. Wang, Y. He, S. Zhang, G. Xiang, and F.S. Boi, Phys. Chem. Chem. Phys. 17, 18159 (2015).CrossRefGoogle Scholar
  21. 21.
    G. Korneva, H. Ye, Y. Gogotsi, D. Halverson, G. Friedman, J.C. Bradley, and K.G. Kornev, Nano Lett. 5, 879 (2005).CrossRefGoogle Scholar
  22. 22.
    X. Wang, Z. Zhao, J. Qu, Z. Wang, and J. Qiu, J. Phys. Chem. Solids 71, 673 (2010).CrossRefGoogle Scholar
  23. 23.
    R. Lv, A. Cao, F. Kang, W. Wang, J. Wei, J. Gu, K. Wang, and D. Wu, J. Phys. Chem. C 111, 11475 (2007).CrossRefGoogle Scholar
  24. 24.
    N. Kiselev, R. Zakalyukin, O. Zhigalina, N. Grobert, A. Kumskov, Y.V. Grigoriev, M. Chernysheva, A. Eliseev, A. Krestinin, and Y.D. Tretyakov, J. Microsc. 232, 335 (2008).MathSciNetCrossRefGoogle Scholar
  25. 25.
    H. Younes, R.A. Al-Rub, M.M. Rahman, A. Dalaq, A. Al Ghaferi, and T. Shah, Diam. Relat. Mater. 68, 109 (2016).CrossRefGoogle Scholar
  26. 26.
    M.M. Rahman, H. Younes, N. Subramanian, and A.A. Ghaferi, J. Nanomater. 2014, 145 (2014).Google Scholar
  27. 27.
    M. Islam, E. Rojas, D. Bergey, A. Johnson, and A. Yodh, Nano Lett. 3, 269 (2003).CrossRefGoogle Scholar
  28. 28.
    H. Hong, X. Luan, M. Horton, C. Li, and G. Peterson, Thermochim. Acta 525, 87 (2011).CrossRefGoogle Scholar
  29. 29.
    L. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.F. Cui, and Y. Cui, Proc. Natl. Acad. Sci. 106, 21490 (2009).CrossRefGoogle Scholar
  30. 30.
    J.W. Kang, K.S. Kim, and H.J. Hwang, Comput. Mater. Sci. 50, 1818 (2011).CrossRefGoogle Scholar
  31. 31.
    Z. Ai, Y. Wang, M. Xiao, L. Zhang, and J. Qiu, J. Phys. Chem. C 112, 9847 (2008).CrossRefGoogle Scholar
  32. 32.
    P. Feng, X-b Fu, Y. Hao, and H.J. Wang, New Carbon Mater. 22, 213 (2007).CrossRefGoogle Scholar
  33. 33.
    A. Masotti and A. Caporali, Int. J. Mol. Sci. 14, 24619 (2013).CrossRefGoogle Scholar
  34. 34.
    H. Gul, W. Lu, P. Xu, J. Xing, and J. Chen, Nanotechnology 21, 155101 (2010).CrossRefGoogle Scholar
  35. 35.
    M. Zhang, Y. Wang, Y. Zhang, L. Ding, J. Zheng, and J. Xu, Appl. Surf. Sci. 375, 154 (2016).CrossRefGoogle Scholar
  36. 36.
    E.T. Thostenson and T.W. Chou, J. Phys. D Appl. Phys. 35, L77 (2002).CrossRefGoogle Scholar
  37. 37.
    M.S. Mauter, M. Elimelech, and C.O. Osuji, ACS Nano 4, 6651 (2010).CrossRefGoogle Scholar
  38. 38.
    I.T. Kim, A. Tannenbaum, and R. Tannenbaum, Carbon 49, 54 (2011).CrossRefGoogle Scholar
  39. 39.
    G. Christensen, H. Younes, H. Hong, and G. Peterson, J. Nanofluids 2, 25 (2013).CrossRefGoogle Scholar
  40. 40.
    H. Younes, G. Christensen, M. Liu, H. Hong, Q. Yang, and Z. Lin, J. Nanofluids 3, 33 (2014).CrossRefGoogle Scholar
  41. 41.
    C. Gao, W. Li, H. Morimoto, Y. Nagaoka, and T. Maekawa, J. Phys. Chem. B 110, 7213 (2006).CrossRefGoogle Scholar
  42. 42.
    Y. Li, Y. Huang, S. Qi, L. Niu, Y. Zhang, and Y. Wu, Appl. Surf. Sci. 258, 3659 (2012).CrossRefGoogle Scholar
  43. 43.
    Y. Guan, C. Jiang, C. Hu, and L. Jia, Talanta 83, 337 (2010).CrossRefGoogle Scholar
  44. 44.
    L. Gao and L. Chen, Microchim. Acta 180, 423 (2013).CrossRefGoogle Scholar
  45. 45.
    T. K. Shah, B. W. Pietras, D. J. Adcock, H. C. Malecki, and M. R. Alberding (Google Patents, 2013).Google Scholar
  46. 46.
    H. Younes, R.A. Al-Rub, M.M. Rahman, A. Dalaq, A. Al Ghaferi, and T. Shah, Diam. Relat. Mater. 68, 109 (2016).CrossRefGoogle Scholar
  47. 47.
    H. Younes, G. Christensen, X. Luan, H. Hong, and P. Smith, J. Appl. Phys. 111, 064308 (2012).CrossRefGoogle Scholar
  48. 48.
    S.H. Lee, D. Kang, and I.K. Oh, Carbon 111, 248 (2017).CrossRefGoogle Scholar
  49. 49.
    M.W. Kim, W.J. Han, Y.H. Kim, and H.J. Choi, Colloids Surf. A Physicochem. Eng. Asp. 506, 812 (2016).CrossRefGoogle Scholar
  50. 50.
    J. Fang, T. Liu, Z. Chen, Y. Wang, W. Wei, X. Yue, and Z. Jiang, Nanoscale 8, 8899 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Material Engineering, Masdar Institute of Science and TechnologyKhalifa University of Science and TechnologyAbu DhabiUnited Arab Emirates
  2. 2.Department of Industrial and Production Engineering (IPE)Military Institute of Science and Technology (MIST)Mirpur, DhakaBangladesh
  3. 3.MIT Lincoln LaboratoriesMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Department of PhysicsAl al-Bayt UniversityMafraqJordan

Personalised recommendations