Skip to main content
Log in

An Efficient and Sustainable Approach for Preparing Silicon Fertilizer by Using Crystalline Silica from Ore

  • Sustainable Pyrometallurgical Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Silicon fertilizer has been prepared by converting crystalline silica from ore into plant-available silicon using a roasting method. The results of roasting experiments showed that adding limestone as an additive ingredient and sodium hydroxide as a roasting fluxing agent significantly increased the conversion rate of plant-available silicon. Both the roasting temperature and fluxing agent are key factors in the production process of silicon fertilizer. The roasting mechanism was studied by thermogravimetry-differential scanning calorimetry (TG-DSC) and x-ray diffraction (XRD) analysis. The TG-DSC results indicated that, in the presence of the fluxing reagent, the decomposition temperature for limestone and the initial reaction temperature for the conversion were reduced by 22.1°C and 33.2°C, respectively. These results also revealed that plant-available silicon conversion is an endothermic reaction without flux but an exothermic reaction with flux. The XRD results showed that the effective components of the silicon fertilizer were CaSiO3, Ca2SiO4, and Ca3SiO5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Guo, Z. Zhao, and F. Cheng, Hydrometallurgy 169, 4189 (2017). https://doi.org/10.1016/j.hydromet.2017.02.021.

    Article  Google Scholar 

  2. K. Quast, Miner. Eng. 108, 12 (2017). https://doi.org/10.1016/j.mineng.2017.01.008.

    Article  Google Scholar 

  3. Y. Liang, J. Integr. Agric. 17, 2137 (2018). https://doi.org/10.1016/S2095-3119(18)62081-7.

    Article  Google Scholar 

  4. Richard J. Haynes, Adv. Agron. 146, 83 (2017). https://doi.org/10.1016/bs.agron.2017.06.001.

    Article  Google Scholar 

  5. M. Zhang, Y. Liang, and G. Chu, Sci. Hortic. 225, 757 (2017). https://doi.org/10.1016/j.scienta.2017.08.019.

    Article  Google Scholar 

  6. T. Klotzbücher, A. Marxen, D. Vetterlein, J. Schneiker, M. Türke, N. Van Sinh, N. HungManh, H. Chien, L. Marquez, S. Villareal, J. Victor Bustamante, and R. Jahn, Basic Appl. Ecol. 16, 665 (2015). https://doi.org/10.1016/j.baae.2014.08.002.

    Article  Google Scholar 

  7. R.J. Haynes, Geoderma 337, 375 (2019). https://doi.org/10.1016/j.geoderma.2018.09.026.

    Article  Google Scholar 

  8. J. Ma and N. Yamaji, Trends Plant Sci. 20, 435 (2015). https://doi.org/10.1016/j.tplants.2015.04.007.

    Article  Google Scholar 

  9. K.A. Wijaya and K. Anom, Agric. Agric. Sci. Proc. 9, 158 (2016). https://doi.org/10.1016/j.aaspro.2016.02.111.

    Article  Google Scholar 

  10. H. Marschner, J. Ecol. 76, 1250 (1995). https://doi.org/10.1016/B978-012473542-2/50019-5.

    Article  Google Scholar 

  11. Z. Jarosz, J. Elementol. 18, 403 (2013). https://doi.org/10.5601/jelem.2013.18.3.05.

    Article  Google Scholar 

  12. H. Liu, J. Li, G. Zheng, Q. Du, T. Pan, and Y. Chang, Acta Agric. Boreali-Occident. Sin. 23, 8 (2014). https://doi.org/10.7606/j.issn.1004-1389.2014.08.019.

    Article  Google Scholar 

  13. S. Dehghani, C. Ghobadi, B. Baninasab, M. Gheysari, and S. Shirani Bidabadi, J. Plant Nutr. 39, 502 (2015). https://doi.org/10.1080/01904167.2015.1086789.

    Article  Google Scholar 

  14. N.K. Savant, L.E. Datnoff, and G.H. Snyder, Commun. Soil Sci. Plant Anal. 28, 1245 (2008). https://doi.org/10.1080/00103629709369870.

    Article  Google Scholar 

  15. S.A. Abro, R. Qureshi, F.M. Soomro, A.A. Mirbahar, and G.S. Jakhar, Pak. J. Bot. 41, 1385 (2009). https://doi.org/10.3417/2007082.

    Article  Google Scholar 

  16. C.X. Xu, Y.P. Ma, and Y.L. Liu, S. Afr. J. Bot. 98, 26 (2015). https://doi.org/10.1016/j.sajb.2015.01.008.

    Article  Google Scholar 

  17. F.J. Ma, Soil Sci. Plant Nutr. 50, 11 (2004). https://doi.org/10.1080/00380768.2004.10408447.

    Article  Google Scholar 

  18. Y. Liang, W. Sun, Y.G. Zhu, and P. Christie, Environ. Pollut. 147, 422 (2007). https://doi.org/10.1016/j.envpol.2006.06.008.

    Article  Google Scholar 

  19. C. Keller, M. Rizwan, J.C. Davidian, O. Pokrovsky, N. Bovet, P. Chaurand, and J.D. Meunier, Planta 241, 847 (2015). https://doi.org/10.1007/s00425-014-2220-1.

    Article  Google Scholar 

  20. Y. Liang, M. Nikolic, R. Bélanger, H. Gong, and A. Song, Silicon in Agriculture (Amsterdam: Springer, 2015).

    Book  Google Scholar 

  21. J. Ma, H. Cai, C. He, W. Zhang, and L. Wang, N. Phytol. 206, 1063 (2015). https://doi.org/10.1111/nph.13276.

    Article  Google Scholar 

  22. J.W. Wu, S. Yu, Y.X. Zhu, Y.C. Wang, and H.J. Gong, Pedosphere 23, 815 (2013). https://doi.org/10.1016/S1002-0160(13)60073-9.

    Article  Google Scholar 

  23. M. Adrees, S. Ali, M. Rizwan, M. Zia-ur-Rehman, M. Ibrahim, F. Abbas, M. Farid, M.F. Qayyum, and M.K. Irshad, Ecotoxicol. Environ. Saf. 119, 186 (2015). https://doi.org/10.1016/j.ecoenv.2015.05.011.

    Article  Google Scholar 

  24. F. Guntzer, C. Keller, and J.D. Meunier, Agron. Sustain. Dev. 32, 201 (2012). https://doi.org/10.1007/s13593-011-0039-8.

    Article  Google Scholar 

  25. M. Wang, J.J. Wang, and X. Wang, Geoderma 321, 22 (2018). https://doi.org/10.1016/j.geoderma.2018.02.001.

    Article  Google Scholar 

  26. E. Epstein, Proc. Natl. Acad. Sci. USA 91, 11 (1994). https://doi.org/10.2307/2363729.

    Article  Google Scholar 

  27. J.T. Cornelis and B. Delvaux, Funct. Ecol. 30, 1111 (2016). https://doi.org/10.1111/1365-2435.12704.

    Article  Google Scholar 

  28. E. Struyf, A. Smis, S. Van Demme, J. Garnier, G. Govers, B. Van Wesemael, D.J. Conley, O. Batelann, E. Frot, W. Clymans, F. Vandevenne, C. Lancelot, P. Goos, and P. Meire, Nat. Commun. 1, 129 (2010). https://doi.org/10.1038/ncomms1128.

    Article  Google Scholar 

  29. F. Vandevenne, E. Struyf, W. Clymans, and P. Meire, Front. Ecol. Environ. 10, 243 (2012). https://doi.org/10.1890/110046.

    Article  Google Scholar 

  30. T. Klotzbücher, A. Klotzbücher, K. Klaus, M. Ines, and M. Robert, Geoderma 331, 15 (2018). https://doi.org/10.1016/j.geoderma.2018.06.011.

    Article  Google Scholar 

  31. A. Song, D. Ning, F. Fan, Z. Li, M. Provancebowley, and Y. Liang, Sci. Rep. 5, 17354 (2015). https://doi.org/10.1038/srep17354.

    Article  Google Scholar 

  32. P. Hu, Y. Zhang, Y. Zhou, X. Ma, and P.K. Chu, Environ. Prog. Sustain. Energy 1, 1 (2017). https://doi.org/10.1002/ep.12776.

    Article  Google Scholar 

  33. K. Thiagalingam, J.A. Silva, and R.L. Fox, Conference on Chemistry and Fertility of Tropical Soils 149 (1977)

  34. D.L. Cai, Silicon Fertilizer and Its Application Technology (Beijing: Taihai Publishing House, 2001) (In Chinese).

    Google Scholar 

  35. R.J. Haynes, O.N. Belyaeva, and G. Kingston, J. Plant Nutr. Soil Sci. 176, 238 (2013). https://doi.org/10.1002/jpln.201200372.

    Article  Google Scholar 

  36. K. Ito, K. Endoh, Y. Shiratori, and K. Inubushi, Soil Sci. Plant Nutr. (Abingdon, UK) 61, 835 (2015). https://doi.org/10.1080/00380768.2015.1064326.

    Article  Google Scholar 

  37. W. J. Duan, Study on preparation of silicon fertilizer using wollastonite (2015) (In Chinese)

  38. M. Vaculík, T. Landberg, M. Greger, M. Luxová, M. Stoláriková, and A. Lux, Sci. Rep. 110, 433 (2012). https://doi.org/10.1093/aob/mcs039.

    Article  Google Scholar 

  39. L. Qian, B. Chen, and M. Chen, Sci. Rep. 6, 29346 (2016). https://doi.org/10.1038/srep29346.

    Article  Google Scholar 

  40. S. Agarie, H. Uchida, W. Agata, F. Kubota, and P.B. Kaufman, Plant Prod. Sci. 1, 89 (1998). https://doi.org/10.1626/pps.1.89.

    Article  Google Scholar 

  41. T. Hayasaka, H. Fujii, and K. Ishiguro, Phytopathology 98, 1038 (2008). https://doi.org/10.1094/phyto-98-9-1038.

    Article  Google Scholar 

  42. F. Fauteux, W. Rémus-Borel, J.G. Menzies, and R.R. Bélanger, FEMS Microbiol. Lett. 249, 1 (2005). https://doi.org/10.1016/j.femsle.2005.06.034.

    Article  Google Scholar 

  43. P.H. Seron, K.G. Henrique, V.A.D. Aquino, and C.M. de Sartori, Sci. Agric. 61, 522 (2004). https://doi.org/10.1590/s0103-90162004000500010.

    Article  Google Scholar 

  44. G.G. Javier, C. Virgilio, R.V. Lorena, C.F. Elena, G.M. Rafael, and T. Laura, Ann. Acad. Bras. Cienc. 82, 267 (2010). https://doi.org/10.1590/S0001-37652010000200003.

    Article  Google Scholar 

  45. J.F.P. Gomes and C.G. Pinto, Rev. Metal. 42, 409 (2006). https://doi.org/10.3989/revmetalm.2006.v42.i6.39.

    Article  Google Scholar 

  46. J.M. Valverde and J. Manuel, Chem. Eng. Sci. 132, 169 (2015). https://doi.org/10.1016/j.ces.2015.04.027.

    Article  Google Scholar 

  47. L.E. Datnoff, Crop Protect. 16, 525 (1997). https://doi.org/10.1016/S0261-2194(97)00033-1.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Natural Science Foundation of China (No. 51764023) and the National Natural Science Foundation of China (No. 51464030) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Likun Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, B., Gao, L., Dai, H. et al. An Efficient and Sustainable Approach for Preparing Silicon Fertilizer by Using Crystalline Silica from Ore. JOM 71, 3915–3922 (2019). https://doi.org/10.1007/s11837-019-03630-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03630-5

Navigation