Skip to main content
Log in

Precipitation Behavior of AlN in High-Magnetic-Induction Grain-Oriented Silicon Steel Slab

  • Advances in Processing, Manufacturing, and Applications of Magnetic Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The magnetic properties of high-magnetic-induction grain-oriented silicon steel are strongly related to the precipitation and dissolution of the AlN inhibitor. The three-dimensional morphology, size, quantity, and microstructure of AlN in oriented silicon steel slabs have been investigated by an electrolytic method, automated analysis technology for inclusions, and transmission electron microscopy. The AlN particles presented plate-like and rectangular blocks, precipitating more easily in the center of the slab. The morphology of AlN is determined by its hexagonal crystal system structure and growth rate in (210), (001), and (110) planes during solidification of the slab. Complete dissolution of AlN particles approaching 10 μm is difficult to achieve on thermal processing at 1423 K. Special attention should be paid to control of the precipitation size of AlN during solidification to improve the slab reheating process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Littman, J. Magn. Magn. Mater. 26, 1 (1982).

    Article  Google Scholar 

  2. M. Yan, H. Qian, P. Yan, H. Song, Y. Shao, and W. Mao, Acta Metall. Sin. 48, 16 (2012).

    Article  Google Scholar 

  3. K. Price, B. Goode, and D. Power, Ironmak. Steelmak. 43, 636 (2016).

    Article  Google Scholar 

  4. E. Gutiérrez-Castañeda and A. Salinas-Rodríguez, J. Magn. Magn. Mater. 323, 2524 (2011).

    Article  Google Scholar 

  5. T. Ros-Yañez, Y. Houbaert, O. Fischer, and J. Scheider, J. Mater. Process. Technol. 141, 132 (2003).

    Article  Google Scholar 

  6. H. Song, H. Liu, H. Lu, H. Li, W. Liu, X. Zhang, and G. Wang, Mater. Sci. Eng. A-Struct. 605, 260 (2014).

    Article  Google Scholar 

  7. Y. Wang, Y. Zhang, X. Lu, F. Fang, G. Cao, C. Li, Y. Xu, R. Misra, and G. Wang, Steel Res. Int. 87, 1601 (2016).

    Article  Google Scholar 

  8. K. Ishiyama, K. Arai, and T. Honda, J. Appl. Phys. 70, 6262 (1991).

    Article  Google Scholar 

  9. F. Fang, Y. Zhang, X. Lu, Y. Wang, G. Gao, Y. Guo, Y. Xu, G. Wang, and R. Misra, Mater. Des. 105, 398 (2016).

    Article  Google Scholar 

  10. J. Oh, S. Cho, and J. Jonas, ISIJ Int. 41, 484 (2001).

    Article  Google Scholar 

  11. F. Lu, Res. Iron. Steel. 6, 54 (1996).

    Google Scholar 

  12. H. Li, Y. Feng, X. Qi, and D. Cang, J. Liang. Acta Metall. Sin. 49, 562 (2013).

    Article  Google Scholar 

  13. K. Günther, G. Abbruzzese, S. Fortunati, and G. Ligi, Steel Res. Int. 76, 413 (2005).

    Article  Google Scholar 

  14. T. Sakai, M. Shiozaki, and K. Takashina, J. Appl. Phys. 50, 2369 (1979).

    Article  Google Scholar 

  15. J. Wang, B. Zhou, Q. Li, Y. Zhu, and H. Sun, Trans. Nonferr. Metal. Soc. 15, 460 (2005).

    Google Scholar 

  16. G. Liu, C. Ling, L. Fan, B. Fu, L. Xiang, and S. Qiu, J. Iron. Steel. Res. 26, 60 (2014).

    Google Scholar 

  17. Y. Chen, Y. Wang, and A. Zhao, J. Iron. Steel Res. Int. 19, 51 (2012).

    Article  Google Scholar 

  18. W. Swift, Metall. Mater. Trans. B 4, 153 (1973).

    Article  Google Scholar 

  19. Y. Li, W. Mao, and P. Yang, J. Mater. Sci. Technol. 27, 1120 (2011).

    Article  Google Scholar 

  20. X. Chen, C. Zhu, L. Deng, and G. Li, Adv. Mater. Res. 906, 268 (2014).

    Article  Google Scholar 

  21. C. Zhu, X. Chen, G. Li, Y. Fu, and Y. Jiang, J. Chongqing Univ. 38, 111 (2015).

    Google Scholar 

  22. Y. Liu, L. Zhang, H. Duan, Y. Zhang, Y. Luo, and A. Conejo, Metall. Mater. Trans. A 47, 3015 (2016).

    Article  Google Scholar 

  23. F. Wilson and T. Gladman, Metall. Rev. 33, 221 (1988).

    Article  Google Scholar 

  24. S. Taguchi and A. Sakakura, Acta Metall. 14, 405 (1966).

    Article  Google Scholar 

  25. N. Zolotorevsky, V. Pletenev, and Y. Titovets, Model. Simul. Mater. Sci. 6, 383 (1988).

    Article  Google Scholar 

  26. G. Yazdi, M. Syväjärvi, and R. Yakimova, Phys. Scr. T126, 127 (2006).

    Article  Google Scholar 

  27. A. Tuling and B. Mintz, Mater. Sci. Technol. 32, 568 (2015).

    Article  Google Scholar 

  28. Q. Yong, Secondary Phases in Steels (Beijing: Metallurgical Industry Press, 2006), pp. 300–319.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the National Science Foundation China (Grant No. 51774031), Open Project of State Key Laboratory of Advanced Special Steel, Shanghai University (SKLASS 2017-12), China, and Shougang Qian’an Iron & Steel Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, M., Bao, Y. et al. Precipitation Behavior of AlN in High-Magnetic-Induction Grain-Oriented Silicon Steel Slab. JOM 71, 3135–3141 (2019). https://doi.org/10.1007/s11837-019-03623-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03623-4

Navigation