Constitutive Topics in Physical Chemistry of High-Temperature Nonferrous Metallurgy—A Review: Part 1. Sulfide Roasting and Smelting


The prime objective of this review series is to demonstrate the significant role of physicochemical principles in the development and improvement of extraction technologies for different types of metals categorized as common, reactive, rare and refractory. In this part we highlight the roles of phase rule, free energy and activity in roasting and smelting of sulfides. Continuing development of new technologies and reduction in the number of steps in the production of copper, lead, zinc and nickel have been possible because of the thorough understanding and application of the physical chemistry of reactions involved in different extraction steps. The theoretical bases behind the development of several new technologies and the difficulties in realizing certain worthwhile concepts in industrial practices are explained.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Adapted from Shamsuddin et al.1 with permission

Fig. 3

Adapted from Shamsuddin et al.1 with permission

Fig. 4
Fig. 5

Adapted from Ref. 21


  1. 1.

    M. Shamsuddin, Physical Chemistry of Metallurgical ProcessesThe Minerals, Metals and Materials Society, (Hoboken: Wiley, 2016) (Chapters 2 and 3).

    Book  Google Scholar 

  2. 2.

    H. Ahmadzai, S. Blairs, B. Harris, and L.I. Staffanson, Metall. Trans. B 14 B, 589 (1983).

    Article  Google Scholar 

  3. 3.

    T. Rosenqvist, Principles of Extractive Metallurgy (New York: McGraw-Hill Book Co., 1974) (Chapter 8).

    Google Scholar 

  4. 4.

    A. Yazawa, Metall. Trans. B 10 B, 307 (1979).

    Article  Google Scholar 

  5. 5.

    M. Nagamori and F. Habashi, Metall. Trans. B 5 B, 523 (1974).

    Article  Google Scholar 

  6. 6.

    T.R. Ingraham and H.H. Kellogg, Trans. Met. Soc. AIME 227, 1419 (1963).

    Google Scholar 

  7. 7.

    H.H. Kellogg and S.K. Basu, Trans. Met. Soc. AIME 218, 70 (1960).

    Google Scholar 

  8. 8.

    H.Y. Sohn and R.P. Goel, Mineral Sci. Engg. 11, 137 (1979).

    Google Scholar 

  9. 9.

    A.K. Biswas and D.W. Davenport, Extractive Metallurgy of Copper (New York: Elsevier Science Press, 1976) (Chapter 3).

    Google Scholar 

  10. 10.

    J.D. Gilchrist, Extraction Metallurgy, 2nd ed. (Oxford: Pergamon Press, 1980) (Chapter 12).

    Google Scholar 

  11. 11.

    E.T. Turkdogan, Physical Chemistry of High Temperature Reactions (New York: Academic Press, 1980) (Chapter 8).

    Google Scholar 

  12. 12.

    M. Shamsuddin, N.V. Ngoc, and P.M. Prasad, Met. Mater. Process. 1, 275 (1990).

    Google Scholar 

  13. 13.

    K. Natesan and W.O. Philbrook, Trans. Met. Soc. AIME 245, 2243 (1969).

    Google Scholar 

  14. 14.

    K. Natesan and W.O. Philbrook, Metall. Trans. 1, 1353 (1970).

    Article  Google Scholar 

  15. 15.

    I.D. Shah and S.E. Khalafallah, Metall. Trans. 2, 605 (1971).

    Article  Google Scholar 

  16. 16.

    I.D. Shah and S.E. Khalafallah, Metall. Trans. 2, 2637 (1971).

    Article  Google Scholar 

  17. 17.

    L. Coudurier, I. Wilkomirski, and G. Morizot, Trans. Instn. Min. Met. 79, C34 (1970).

    Google Scholar 

  18. 18.

    P.R. Amman and T.A. Loose, Metall. Trans. 2, 889 (1971).

    Article  Google Scholar 

  19. 19.

    S.E. Khalafallah, Roasting as a unit process.Rate Processes in Extractive Metallurgy, eds. H.Y. Sohn and M.E. Wadsworth (New York: Plenum Press, 1979), (Chapter 4, Section 4.1).

    Google Scholar 

  20. 20.

    H.Y. Sohn, S. Kang, and J. Chang, Miner. Metall. Process. 22, 65 (2005).

    Google Scholar 

  21. 21.

    H.Y. Sohn, Principles of Copper Production, Treatise on Process Metallurgy, Volume 3 Industrial Processes Part A, (Elsevier, Oxford, 2014) (Section 2.1.1).

  22. 22.

    H. Carr, M.J. Humphris and A. Longo, The smelting of bulk Cu-Ni concentrates at the inco copper cliff smelter. in Proceedings of the Nickel-Cobalt 97 International Symposium, Vol. III Pyrometallurgical Operations, Environment, Vessel Integrity in High-Intensity Smelting and Converting Processes, eds. C. Diaz, I. Holubec and C.G. Tan (Metallurgical Society, CIM, Montreal, 1997), p. 5.

  23. 23.

    I.V. Kojo, A. Jokilaakso, and P. Hanniala, JOM 52, 57 (2000).

    Article  Google Scholar 

  24. 24.

    W.G. Davenport, M. King, M. Schlesinger, and A.K. Biswas, Extractive Metallurgy of Copper, 4th ed. (Oxford: Elsevier Science Ltd., 2002) (Chapters 5-10).

    Google Scholar 

  25. 25.

    P.J. Mackey and R. Campos, Can. Metall. Q. 40, 355 (2001).

    Article  Google Scholar 

  26. 26.

    W.E. Torres, Current Teniente converter practice at the SPL Ilo smelter. in Sulfide Smelting’98, Current and Future Practices, eds. J.A. Asteljoki and R.L. Stephens, (TMS, Warrendale, 1998) p. 147.

  27. 27.

    J.M. Floyd, Metall. Mat. Trans. B 36B, 557 (2005).

    Article  Google Scholar 

  28. 28.

    E.N. Mounsey and K.R. Robilliard, JOM 46, 58 (1994).

    Article  Google Scholar 

  29. 29.

    S. Hughes, M.A. Reuter, R. Baxter and A. Kaye, The Southern African Institute of Mining and Metallurgy (2008) p. 147.

  30. 30.

    R. McClelland, J. Hoang, B. Lightfoot and D. Dhanavel, Commissioning of the Ausmelt lead smelter at Hindustan Zinc. in International Symposium on Sulfide Smelting, Vol. 8 (Sohn International Symposium), eds. F. Kongoli and R. G. Reddy (TMS, Warrendale, 2006), p 163.

  31. 31.

    I.V. Kojo and H. Storch, Copper production with Outokumpu flash smelting an update. in International Symposium on Sulfide Smelting, Vol. 8 (Sohn International Symposium) eds. F. Kongoli and R.G. Reddy, (TMS, Warrendale, 2006), p. 225.

  32. 32.

    Y. Prevost, R. Lepointe, C.A. Levac and D. Beaudoin, First year of operation of the Noranda continuous converter. in Copper 99-Cobre 99 In Proceedings of the Fourth International Conference, Vol. V, Smelting Operations and Advances, eds. D.B. George, W.J. Chen, P.J. Mackey and A.J. Weddick, (TMS, Warrendale, 1999), p. 269.

  33. 33.

    M. Goto, I. Oshima, and M. Hayashi, JOM 50, 60 (1998).

    Article  Google Scholar 

  34. 34.

    H.K. Worner, Continuous smelting and refining by the WORCRA process. in Proceedings of Symposium on Advances in Extractive Metallurgy, (Institute of Mining and Metallurgy, London, 1968), p. 245.

  35. 35.

    F. Schnalek, J. Holeczy, and J. Schmiedl, JOM 16, 416 (1964).

    Article  Google Scholar 

  36. 36.

    E.J. Peuraniemi and M. Lahtinen, Outokumpu blister flash smelting process, in International Symposium on Sulfide Smelting, Vol. 8 (Sohn International Symposium) eds. F. Kongoli and R.G. Reddy, (TMS, Warrendale, 2006), p 303.

  37. 37.

    M. Goto and M. Hayashi, The Mitsubishi continuous process, Mitsubishi Material Corporation, Tokyo, (1998).

  38. 38.

    A. Yazawa, Y. Takeda, and Y. Waseda, Can. Met. Quart. 20, 129 (1981).

    Article  Google Scholar 

  39. 39.

    N. Sevryukov, B. Kuzmin and Y. Chelishchev, (translated: Kuznetsov B.) General Metallurgy, (Moscow, Peace Publishers, 1960) (Chapter 19 and 20).

  40. 40.

    P.E. Queneau and R. Schuhmann, JOM 26, 14 (1974).

    Article  Google Scholar 

  41. 41.

    P.E. Queneau, JOM 41, 30 (1989).

    Article  Google Scholar 

  42. 42.

    P. Fischer and H. Mazek, JOM 34, 60 (1982).

    Article  Google Scholar 

  43. 43.

    R. Saddington, W. Curlook, and P.E. Queneau, JOM 18, 440 (1966).

    Article  Google Scholar 

  44. 44.

    P.E. Queneau, C.E. O’Neill, A. Illis, and J.S. Warner, JOM 21, 35 (1969).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to H. Y. Sohn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shamsuddin, M., Sohn, H.Y. Constitutive Topics in Physical Chemistry of High-Temperature Nonferrous Metallurgy—A Review: Part 1. Sulfide Roasting and Smelting. JOM 71, 3253–3265 (2019).

Download citation