Skip to main content
Log in

Evaluation on the Manufacturability of Solderable Sn Coatings Obtained by Employing Hot-Dipped Tinning Process

  • Advances in Surface Engineering
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The lack of systematic evaluation on the feasibility of fabricating solderable coatings through a hot-dipped tinning process restricts the increasing applications of this process in the electronics industry. In this paper, the temperature-dependence, wettability, thermal stability, and microstructure of solderable Sn coatings produced by hot-dipped tinning are evaluated synthetically, which aims at developing a cost-efficient and environment-friendly way to fabricate solderable Sn coatings. Experimental results show that a dipping temperature of 280–320°C and dipping time of 4–6 s are appropriate process conditions for C1100 foils. The solderability of C1100 foils is superior to C194 foils. After long-term service (up to 500 h) at elevated temperature, sharp spines caused by SnO2 whiskers appear on the surface of coated C194 foils, which increase the risk of short circuit in use and lower their reliability. The addition of microalloying elements may be a possible solution to restrain SnO2 whiskers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Spitz, M. Fleischanderl, R. Sierlinger, M. Reischauerb, F. Perndorfer, and G. Fafilek, J. Mater. Process. Technol. 216, 339 (2015).

    Article  Google Scholar 

  2. M.E. Makhatha, O.S. Fatoba, and E.T. Akinlabi, Int. J. Adv. Manuf. Technol. 94, 1 (2017).

    Google Scholar 

  3. H. Diao, C.Q. Wang, and L. Wang, Adv. Mater. Res. 32, 93 (2008).

    Article  Google Scholar 

  4. R.A. Gagliano, G. Ghosh, and M.E. Fine, J. Electron. Mater. 31, 1195 (2002).

    Article  Google Scholar 

  5. Z.H. Zhang, M.Y. Li, Z.Q. Liu, and S.H. Yang, Acta Mater. 104, 1 (2016).

    Article  Google Scholar 

  6. I. Buresch, Proceeding of ICEC 201427th International Conference on Electrical Contacts (2014), p. 175.

  7. M. Ohki, T. Ishibashi, and W. Suzuki, J. Mater. Test. Res. Assoc. Jpn. 54, 92 (2009).

    Google Scholar 

  8. J.F. Li, S.H. Mannan, M.P. Clode, D.C. Whalley, and D.A. Hutt, Acta Mater. 54, 2907 (2006).

    Article  Google Scholar 

  9. M. Braunovic, Proceedings of the 49th IEEE Holm Conference on IEEE (2003), p. 124.

  10. T.C. Chang, M.H. Hon, and M.C. Wang, J. Alloys Compd. 352, 168 (2003).

    Article  Google Scholar 

  11. J. Mendala, Solid State Phenom. 246, 113 (2016).

    Article  Google Scholar 

  12. Y.W. Park, G.N.K.R. Bapu, and Y.L. Kang, Appl. Surf. Sci. 255, 4434 (2009).

    Article  Google Scholar 

  13. Q. Wang, Z. Peng, Y. Wang, and X. Fu, Ceram. Int. 44, 6894 (2018).

    Article  Google Scholar 

  14. H. Asgari, M.R. Toroghinejad, and M.A. Golozar, J. Mater. Process. Technol. 198, 54 (2008).

    Article  Google Scholar 

  15. K.H. Prakash and T. Sritharan, Acta Mater. 49, 2481 (2001).

    Article  Google Scholar 

  16. I. Buresch, Vde Fachberichte 67, 38 (2011).

    Google Scholar 

  17. K.N. Tu and K. Zeng, Mater. Sci. Eng., R 38, 55 (2002).

    Article  Google Scholar 

  18. C.M.L. Wu, D.Q. Yu, C.M.T. Law, and L. Wang, Mater. Sci. Eng., R 44, 1 (2004).

    Article  Google Scholar 

  19. Y. Takaku, X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, Mater. Trans. 45, 646 (2004).

    Article  Google Scholar 

  20. S.W. Tang, X.H. Cai, Z. He, H.Y. Shao, Z.J. Li, and E. Chen, Constr. Build. Mater. 113, 939 (2016).

    Article  Google Scholar 

  21. S.W. Tang, H.G. Zhu, Z.J. Li, E. Chen, and H.Y. Shao, Constr. Build. Mater. 75, 11 (2015).

    Article  Google Scholar 

  22. G. Montavon, C. Coddet, C.C. Berndt, and S.H. Leigh, J. Therm. Spray Technol. 7, 229 (1998).

    Article  Google Scholar 

  23. N. Saunders and A.P. Miodownik, Binary Alloy Phase Diagrams (Materials Park: ASM International, 1990), pp. 1481–1483.

    Google Scholar 

  24. X.J. Liu, R. Kainuma, C.P. Wang, I. Ohnuma, and K. Ishida, Metall. Mater. Trans. A 35, 164 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The presented investigations have been supported by the Science and Technology Cooperation Open Project of Henan Province of China (Grant No. 172106000058) and the Joint Funds of National Natural Science Foundation of China (Grant No. U1704143). The authors kindly acknowledge these supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nan Xiang or Bao-hong Tian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, N., Yin, T., Tian, Bh. et al. Evaluation on the Manufacturability of Solderable Sn Coatings Obtained by Employing Hot-Dipped Tinning Process. JOM 71, 4284–4295 (2019). https://doi.org/10.1007/s11837-019-03596-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03596-4

Navigation