Skip to main content
Log in

Strain-Rate-Dependent Deformation Behavior of High-Carbon Steel under Tensile–Compressive Loading

  • Precipitation Mechanisms in Non-ferrous Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

High-carbon low-alloy steels with a dual-phase structure of austenite and martensite are widely used for cutting tools and in mining industries due to their excellent abrasion resistance and strength properties. The aim of this paper is to critically assess the tension–compression asymmetry behavior over a wide range of quasistatic strain rates. Experiments were conducted at four different strain rates (2.56 × 10−4/s to 2.56 × 10−1/s) under uniaxial tensile and compressive loading. The experimental results indicated an increasing trend in the yield strength in tension and compression as the strain rate was increased. It was observed that the influence of the strain rate on the phase transformation behavior had no significant effect on the tensile-loaded specimens. On the other hand, the martensitic transformation was found to be rate dependent in the compression-loaded specimens. Electron backscatter diffraction studies indicated an increase in the grain average misorientation values with an increase in the strain rate. The fracture surface revealed the presence of transgranular and intergranular cracks for the samples deformed at low (2.56 × 10−4/s) and high (2.56 × 10−1/s) strain rates during compressive loading. On the other hand, ridges and cleavage steps were found for the samples deformed under tensile loading. Transmission electron microscopy revealed the formation of dislocation cells and discontinuous blocks of martensite for tensile-loaded specimens, whereas formation of subgrains and a decrease in the lath martensite with an increase in the strain rate were found to be the dominant features for the compressive-loaded specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings will be made available on request.

References

  1. R. Hossain, F. Pahlevani, E. Witteveen, A. Banerjee, B. Joe, B.G. Prusty, R. Dippenaar, and V. Sahajwalla, Sci. Rep. 7, 13288 (2017).

    Article  Google Scholar 

  2. A. Molkeri, F. Pahlevani, I. Emmanuelawati, and V. Sahajwalla, Mater. Lett. 163, 209 (2016).

    Article  Google Scholar 

  3. A. Banerjee, F. Pahlevani, V. Sahajwalla, and B. Prusty, 9th Australasian Congress on Applied Mechanics (ACAM9), Engineers Australia, Sydney (2017) p. 55.

  4. J. Talonen, H. Hänninen, P. Nenonen, and G. Pape, Metall. Mater. Trans. A 36, 421 (2005).

    Article  Google Scholar 

  5. R. Hossain, F. Pahlevani, and V. Sahajwalla, Mater. Charact. 125, 114 (2017).

    Article  Google Scholar 

  6. A. Banerjee, R. Hossain, F. Pahlevani, Q. Zhu, V. Sahajwalla, and B.G. Prusty, J. Mater. Sci. 54, 6594 (2019).

    Article  Google Scholar 

  7. A. Banerjee and B. Gangadhara Prusty, Mater. Sci. Eng. A 749, 79 (2019).

    Article  Google Scholar 

  8. A.A. Tiamiyu, M. Eskandari, M. Nezakat, X. Wang, J.A. Szpunar, and A.G. Odeshi, Mater. Des. 112, 309 (2016).

    Article  Google Scholar 

  9. A. Banerjee, B.G. Prusty, and S. Bhattacharyya, Mater. Sci. Eng., A 744, 224 (2019).

    Article  Google Scholar 

  10. D.P.R. Palaparti, B.K. Choudhary, E. Isaac Samuel, V.S. Srinivasan, and M.D. Mathew, Mater. Sci. Eng. A 538, 110 (2012).

    Article  Google Scholar 

  11. M.X. Yang, F.P. Yuan, Q.G. Xie, Y.D. Wang, E. Ma, and X.L. Wu, Acta Mater. 109, 213 (2016).

    Article  Google Scholar 

  12. E. Cadoni, L. Fenu, and D. Forni, Constr. Build. Mater. 35, 399 (2012).

    Article  Google Scholar 

  13. G.K. Tirumalasetty, M.A. van Huis, C. Kwakernaak, J. Sietsma, W.G. Sloof, and H.W. Zandbergen, Acta Mater. 60, 1311 (2012).

    Article  Google Scholar 

  14. R. Nakkalil, Acta Metall. Mater. 39, 2553 (1991).

    Article  Google Scholar 

  15. P.J. Wray, Metall. Trans. A 13, 125 (1982).

    Article  Google Scholar 

  16. W.-S. Lee and C.-Y. Liu, Mater. Sci. Eng., A 426, 101 (2006).

    Article  Google Scholar 

  17. M.M. Moshksar and E. Marzban Rad, J. Mater. Process. Technol. 83, 115 (1998).

    Article  Google Scholar 

  18. V.A. Shabashov, L.G. Korshunov, A.G. Mukoseev, V.V. Sagaradze, A.V. Makarov, V.P. Pilyugin, S.I. Novikov, and N.F. Vildanova, Mater. Sci. Eng., A 346, 196 (2003).

    Article  Google Scholar 

  19. G. Laird, W.K. Collins, and R. Blickensderfer, Wear 124, 217 (1988).

    Article  Google Scholar 

  20. Z.G. Liu, H.J. Fecht, Y. Xu, J. Yin, K. Tsuchiya, and M. Umemoto, Mater. Sci. Eng., A 362, 322 (2003).

    Article  Google Scholar 

  21. F. Saeidi, M. Yahyaei, M. Powell, and L.M. Tavares, Miner. Eng. 100, 211 (2017).

    Article  Google Scholar 

  22. C. Suryanarayana, Prog. Mater Sci. 46, 1 (2001).

    Article  Google Scholar 

  23. P. Zhou, E. Beeh, and H.E. Friedrich, J. Mater. Eng. Perform. 25, 853 (2016).

    Article  Google Scholar 

  24. Y.G. Liu and M.Q. Li, Mater. Charact. 144, 490 (2018).

    Article  Google Scholar 

  25. X. Qiao, L. Han, W. Zhang, and J. Gu, Mater. Charact. 110, 86 (2015).

    Article  Google Scholar 

  26. H.Y. Yu, G.Y. Kai, and M. De Jian, Mater. Sci. Eng., A 441, 331 (2006).

    Article  Google Scholar 

  27. T. Iwamoto, T. Tsuta, and Y. Tomita, Int. J. Mech. Sci. 40, 173 (1998).

    Article  Google Scholar 

  28. C. Garcia-Mateo, F.G. Caballero, J. Chao, C. Capdevila, and C. Garcia de Andres, J. Mater. Sci. 44, 4617 (2009).

    Article  Google Scholar 

  29. W.A. Spitzig, R.J. Sober, and O. Richmond, Acta Metall. 23, 885 (1975).

    Article  Google Scholar 

  30. T. Maeda, N. Noma, T. Kuwabara, F. Barlat, and Y.P. Korkolis, Proc. Eng. 207, 1976 (2017).

    Article  Google Scholar 

  31. W.A. Spitzig, R.J. Sober, and O. Richmond, Metall. Trans. A 7, 1703 (1976).

    Article  Google Scholar 

  32. A. International, ASTM E8/E8M - 09 Standard Test Methods for Tension Testing of Metallic Materials, ASTM2009.

  33. Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature (ASTM International, ASTM E9-09, West Conshohocken, 2009).

  34. S.-Y. Lee, S.-I. Lee, and B. Hwang, Mater. Sci. Eng., A 711, 22 (2018).

    Article  Google Scholar 

  35. S.K. Paul, A. Raj, P. Biswas, G. Manikandan, and R.K. Verma, Mater. Des. 57, 211 (2014).

    Article  Google Scholar 

  36. D. Anderson, S. Winkler, A. Bardelcik, and M.J. Worswick, Mater. Des. 60, 198 (2014).

    Article  Google Scholar 

  37. N. Tsuchida, H. Nakano, T. Okamoto, and T. Inoue, Mater. Sci. Eng., A 626, 441 (2015).

    Article  Google Scholar 

  38. P. Paupler, Cryst. Res. Technol. 23, 194 (1988).

    Article  Google Scholar 

  39. N. Kumar, Q. Ying, X. Nie, R.S. Mishra, Z. Tang, P.K. Liaw, R.E. Brennan, K.J. Doherty, and K.C. Cho, Mater. Des. 86, 598 (2015).

    Article  Google Scholar 

  40. B.L. Boyce and M.F. Dilmore, Int. J. Impact Eng 36, 263 (2009).

    Article  Google Scholar 

  41. Y. Lu, Z. Zhu, D. Li, and Q. Xie, Mater. Sci. Engl. A 679, 215 (2017).

    Article  Google Scholar 

  42. L. Orgéas and D. Favier, Acta Mater. 46, 5579 (1998).

    Article  Google Scholar 

  43. H. Kim, J. Park, Y. Ha, W. Kim, S.S. Sohn, H.S. Kim, B.-J. Lee, N.J. Kim, and S. Lee, Acta Mater. 96, 37 (2015).

    Article  Google Scholar 

  44. K. Jacobus, H. Sehitoglu, and M. Balzer, Metall. Mater. Trans. A 27, 3066 (1996).

    Article  Google Scholar 

  45. P.M. Giles, M.H. Longenbach, and A.R. Marder, J. Appl. Phys. 42, 4290 (1971).

    Article  Google Scholar 

  46. S.M. Cotes, A.F. Guillermet, and M. Sade, Metall. Mater. Trans. A 35, 83 (2004).

    Article  Google Scholar 

  47. H. Conrad, Mater. Sci. Eng. 6, 265 (1970).

    Article  Google Scholar 

  48. Y. Xiong, N. Li, H. Jiang, Z. Li, Z. Xu, and L. Liu, Acta Metall. Sin. (Engl. Lett.) 27, 272 (2014).

    Article  Google Scholar 

  49. J.R.C. Guimarães and P.R. Rios, Mater. Res. 18, 595 (2015).

    Article  Google Scholar 

  50. M. Zhang, Y.H. Wang, C.L. Zheng, F.C. Zhang, and T.S. Wang, Mater. Sci. Eng., A 596, 9 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported under the Australian Research Council’s Industrial Transformation Research Hub (ARC-ITRH) funding scheme (project IH130200025). The authors acknowledge the technical support and assistance provided by the Mark Wainwright Analytical Centre, UNSW Sydney. The authors would also like to acknowledge the laboratory support provided by ARC Training Centre for Automated Manufacture of Advanced Composites, School of Mechanical and Manufacturing Engineering, UNSW Sydney, NSW 2052, Australia for conducting the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amborish Banerjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Gangadhara Prusty, B., Zhu, Q. et al. Strain-Rate-Dependent Deformation Behavior of High-Carbon Steel under Tensile–Compressive Loading. JOM 71, 2757–2769 (2019). https://doi.org/10.1007/s11837-019-03594-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03594-6

Navigation