, Volume 71, Issue 9, pp 2952–2958 | Cite as

Analysis of Remediating Effects of Peat, Sawdust, and Gypsum in Alkaline Bauxite Residue Based on Orthogonal Experiments

  • Ben ShiEmail author
  • Xue Liu
  • Huanhuan Deng
  • Sujie Yang
Aluminum: Recycling and Environmental Footprint


An optimization study has been carried out on remediation of alkaline bauxite residue (ABR) using peat, sawdust, and gypsum. The results for the tolerance index (TI) and analysis of variance revealed that the order of effective amendments for ABR revegetation was gypsum > peat > sawdust. Gypsum and peat were statistically inferred to have significant influences on the TI of Atriplex canescens due to their capability to reduce pH, paste extract aluminum, and exchangeable sodium percentage. Peat treatment increased the richness of the rhizosphere-associated microbial community, which may benefit plant–microbe interactions and contribute to Atriplex growth promotion. The optimum operating condition identified by the orthogonal experimental design was the combination of 14% peat, 15% gypsum, and 8% sawdust. Application of the gypsum and peat combination holds great potential to enhance ABR remediation.



This work was funded by Education Department of Henan (15A180049) and Luoyang Institute of Science and Technology (2014BZ07). The authors extend their appreciation to China Aluminium Limited for providing alkaline bauxite residue.

Supplementary material

11837_2019_3593_MOESM1_ESM.pdf (32 kb)
Supplementary material 1 (PDF 31 kb)


  1. 1.
    P. Wang and D.Y. Liu, Materials 5, 1800 (2012).CrossRefGoogle Scholar
  2. 2.
    S. Xue, Y. Wu, Y. Li, X. Kong, F. Zhu, H. William, X. Li, Y. Ye, and J. Cent, South Univ. 26, 268 (2019).CrossRefGoogle Scholar
  3. 3.
    F. Zhu, S. Xue, W. Hartley, L. Huang, C. Wu, and X. Li, Environ. Sci. Pollut. Res. 23, 2856 (2016).CrossRefGoogle Scholar
  4. 4.
    J. Eastham, T. Morald, and P. Aylmore, Water Air Soil Pollut. 176, 5 (2006).CrossRefGoogle Scholar
  5. 5.
    R. Courtney, T. Harrington, and K.A. Byrne, Ecol. Eng. 58, 63 (2013).CrossRefGoogle Scholar
  6. 6.
    S. Chauhan and A. Ganguly, Ecol. Eng. 37, 504 (2011).CrossRefGoogle Scholar
  7. 7.
    J.B. Wehr, I. Fulton, and N.W. Menzies, Environ. Manag. 37, 297 (2006).CrossRefGoogle Scholar
  8. 8.
    M. Gautam, D. Pandey, and M. Agrawal, Int. J. Phytoremediat. 19, 555 (2017).CrossRefGoogle Scholar
  9. 9.
    B.E.H. Jones and R.J. Haynes, Crit. Rev. Environ. Sci. Technol. 41, 271 (2011).CrossRefGoogle Scholar
  10. 10.
    T.C. Santini and N.C. Banning, Hydrometallurgy 164, 38 (2016).CrossRefGoogle Scholar
  11. 11.
    J.B. Goloran, I.R. Phillips, Z.H. Xu, L.M. Condron, and C.R. Chen, Soil Use Manag. 30, 198 (2014).Google Scholar
  12. 12.
    R.G. Courtney and J.P. Timpson, Plant Soil 266, 187 (2005).CrossRefGoogle Scholar
  13. 13.
    N.W. Menzies, I.M. Fulton, and W.J. Morrell, J. Environ. Qual. 33, 1877 (2004).CrossRefGoogle Scholar
  14. 14.
    M.J. Gherardi and Z. Rengel, Plant Soil 257, 85 (2003).CrossRefGoogle Scholar
  15. 15.
    R.G. Courtney and J.P. Timpson, Water Air Soil Pollut. 164, 91 (2005).CrossRefGoogle Scholar
  16. 16.
    A.A. Ojekanmi and S.X. Chang, J. Environ. Qual. 43, 1566 (2014).CrossRefGoogle Scholar
  17. 17.
    W. Liu, J. Yang, and B. Xiao, Int. J. Miner. Process. 93, 220 (2009).CrossRefGoogle Scholar
  18. 18.
    W.L. Daniels, G.K. Evanylo, S.M. Nagle and J.M. Schmidt, in Proceedings 18th National Meeting of the American Society for Surface Mining and Reclamation 3 (2001)Google Scholar
  19. 19.
    M.E. Voorhees, Reclam. Reveg. Res. 5, 483 (1986).Google Scholar
  20. 20.
    M. Gräfe and C. Klauber, Hydrometallurgy 108, 46 (2011).CrossRefGoogle Scholar
  21. 21.
    H.I. Gomes, W.M. Mayes, M. Rogerson, D.I. Stewart, and I.T. Burked, J. Clean. Prod. 112, 3571 (2016).CrossRefGoogle Scholar
  22. 22.
    B. Shi, Y. Qu, and H. Li, Ecol. Eng. 98, 166 (2017).CrossRefGoogle Scholar
  23. 23.
    J.W.C. Wong and G.E. Ho, Waste Manag. Res. 11, 249 (1993).CrossRefGoogle Scholar
  24. 24.
    M.M.N. Alla, A.H.A. Khedr, M.M. Serag, A.Z. Abu-Alnaga, and R.M. Nada, Acta Physiol. Plant. 33, 547 (2011).CrossRefGoogle Scholar
  25. 25.
    D.J. Walker and S. Lutts, Emir. J. Food. Agric. 26, 1081 (2014).CrossRefGoogle Scholar
  26. 26.
    N. Qiu, F. Zhou, Y. Wang, X. Peng, and C. Hua, Russ. J. Plant Physiol. 61, 238 (2014).CrossRefGoogle Scholar
  27. 27.
    M.M.N. Alla, A.A. Khedr, M.M. Serag, A.Z. Abu-Alnaga, and R.M. Nada, Plant Growth Regul. 67, 281 (2012).CrossRefGoogle Scholar
  28. 28.
    H.J. Woodard, L. Hossner, and J. Bush, J. Environ. Sci. Heal. Part A 43, 1157 (2008).CrossRefGoogle Scholar
  29. 29.
    A.V. Geramita, J.M. Geramita, and J.S. Wallis, Linear Multilinear Algebr. 3, 281 (1976).CrossRefGoogle Scholar
  30. 30.
    D.A. Wilkins, New Phytol. 80, 623 (1978).CrossRefGoogle Scholar
  31. 31.
    N. Fierer, J.A. Jackson, R. Vilgalys, and R.B. Jackson, Appl. Environ. Microbiol. 71, 4117 (2005).CrossRefGoogle Scholar
  32. 32.
    R. Courtney and T. Harrington, Land Degrad. Dev. 23, 144 (2012).CrossRefGoogle Scholar
  33. 33.
    R.D. Fuller, E.D.P. Nelson, and C.J. Richardson, J. Environ. Qual. 11, 533 (1982).CrossRefGoogle Scholar
  34. 34.
    A.I. Pogue and W.J. Lukiw, Front. Neurol. 5, 262 (2014).CrossRefGoogle Scholar
  35. 35.
    M. Schmitt, T. Watanabe, and S. Jansen, AoB Plants 8, plw065 (2016).CrossRefGoogle Scholar
  36. 36.
    S. Singh, D.K. Tripathi, S. Singh, S. Sharma, N.K. Dubey, D.K. Chauhan, and M. Vaculík, Environ. Exp. Bot. 137, 177 (2017).CrossRefGoogle Scholar
  37. 37.
    R. Courtney and L. Kirwan, Ecol. Eng. 42, 279 (2012).CrossRefGoogle Scholar
  38. 38.
    R. Courtney, E. Di Carlo, and O. Schmidt, Environ. Sci. Pollut. Res. 1, 1 (2018).Google Scholar
  39. 39.
    CHALCO (Aluminum Corporation of China Limited)., & BGRIMM (Beijing General Research Institute of Mining & Metallurgy). China Invention Patent, No. 200510018271.0, 2005Google Scholar
  40. 40.
    J. Fortin and A. Karam, Int. J. Surf. Min. Reclam. Environ. 12, 105 (1998).CrossRefGoogle Scholar
  41. 41.
    C. Thiyagarajan, R.W. Bell, J. Anderson, and I.R. Phillips, Soil Res. 50, 416 (2012).CrossRefGoogle Scholar
  42. 42.
    R. Courtney and G. Mullen, Water Air Soil Pollut. 197, 15 (2009).CrossRefGoogle Scholar
  43. 43.
    R.M. Niemi, M. Vepsäläinen, K. Wallenius, K. Erkomaa, S. Kukkonen, A. Palojärvi, and M. Vestberg, Eur. J. Soil Biol. 44, 419 (2008).CrossRefGoogle Scholar
  44. 44.
    M. Vepsäläinen, K. Erkomaa, S. Kukkonen, M. Vestberg, K. Wallenius, and R.M. Niemi, Plant Soil 264, 273 (2004).CrossRefGoogle Scholar
  45. 45.
    B.E.H. Jones, R.J. Haynes, and I.R. Phillips, J. Environ. Manag. 91, 2281 (2010).CrossRefGoogle Scholar
  46. 46.
    S. Xue, F. Zhu, X. Kong, C. Wu, L. Huang, N. Huang, and W. Hartley, Environ. Sci. Pollut. Res. 23, 1120 (2016).CrossRefGoogle Scholar
  47. 47.
    O.M. Finkel, G. Castrillo, S. Herrera Paredes, I. Salas González, and J.L. Dangl, Curr. Opin. Plant Biol. 38, 155 (2017).CrossRefGoogle Scholar
  48. 48.
    D. Goswami, J.N. Thakker, and P.C. Dhandhukia, Cogent Food Agric. 2, 1127500 (2016).Google Scholar
  49. 49.
    A. Schmalenberger, O. O’Sullivan, J. Gahan, P.D. Cotter, and R. Courtney, Environ. Sci. Technol. 47, 7110 (2013).CrossRefGoogle Scholar
  50. 50.
    R. Courtney, J.A. Harris, and M. Pawlett, Restor. Ecol. 22, 798 (2014).CrossRefGoogle Scholar
  51. 51.
    M. Benzarti, K. Ben Rejeb, A. Debez, and C. Abdelly, Crop Improv. (Springer US, Boston, MA, 2013), pp. 441–457Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Environmental Engineering and ChemistryLuoyang Institute of Science and TechnologyLuoyangChina

Personalised recommendations