Skip to main content
Log in

Nonlinearity of Material Loss Versus the Wearing Force

  • Advances in Surface Engineering
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In contrast to the description provided by Archard’s equation, material loss under a wearing force is more or less nonlinear. Excluding the wear regime transition and other possible factors such as oxidation, this nonlinear relationship may result from variations in the mechanical behavior of materials such as strain hardening. Although this is a classic topic, relevant issues have still not been fully clarified or quantified. Better understanding of the nonlinearity would help achieve good control of the wear of materials, especially surface wear encountered in nano/microsystems, which are sensitive to surface damage or deterioration. In this study, we investigated the nonlinearity of material loss versus wearing force, without involving the wear regime transition, for three alloys, Al5182 (fcc), AZ31B alloy (hcp), and steel (bcc). An attempt is made to study this phenomenon in depth and extract additional information on the material behavior from the nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.C. Ludema, Friction, Wear, Lubrication: A Textbook in Tribology (Boca Raton: CRC Press, 1996).

    Book  Google Scholar 

  2. M.F. Ashby and D.R. Jones. Fuel Energy Abstr. 4, 284 (1995).

    Google Scholar 

  3. F.A.A. Crane, J.A. Charles, and J. Furness, Selection and Use of Engineering Materials, 3rd ed. (Oxford: Butterworth-Heinemann, 1997).

    Google Scholar 

  4. J.M. Challen, P.L.B. Oxley, and B.S. Hockenhull, Wear 111, 275 (1986).

    Article  Google Scholar 

  5. A. Kapoor and K.L. Johnson, Proc. R. Soc. Lond. A 445, 367 (1994).

    Article  Google Scholar 

  6. J.F. Archard, J. Appl. Phys. 24, 981 (1953).

    Article  Google Scholar 

  7. M.J. Murray, P.J. Mutton, and J.D. Watson, J. Lubr. Technol. 104, 9 (1982).

    Article  Google Scholar 

  8. K. Hokkirigawa, K. Kato, and Z.Z. Li, Wear 123, 241 (1988).

    Article  Google Scholar 

  9. J.L. Xuan, I.T. Hong, and E.C. Fitch, J. Tribol. 111, 35 (1989).

    Article  Google Scholar 

  10. H. Krause and W. Tackenberg, Wear 64, 291 (1980).

    Article  Google Scholar 

  11. L. Fang, Q.D. Zhou, and Y.J. Li, Wear 151, 313 (1991).

    Article  Google Scholar 

  12. A. Kluge, K. Langguth, R. Öchsner, K. Kobs, and H. Ryssel, Mater. Sci. Eng. A 115, 261 (1989).

    Article  Google Scholar 

  13. D.Y. Li, Abrasive wear. ASM Handbook, Volume 18: Friction, Lubrication, and Wear Technology, ed. G.E. Totten (Materials Park: ASM International, 2017).

    Google Scholar 

  14. I. Hutchings and P. Shipway, Tribology: Friction and Wear of Engineering Materials, 2nd ed. (Oxford: Butterworth-Heinemann, 2017).

    Google Scholar 

  15. R. Liu and D.Y. Li, Wear 251, 956 (2001).

    Article  Google Scholar 

  16. G. Pintaude, Introduction of the ratio of the hardness to the reduced elastic modulus for abrasion.Tribology—Fundamentals and Advancements, ed. J. Gegner (Singapore: Intech, 2013),

    Google Scholar 

  17. A.D. Sarkar, Friction and Wear (New York: Academic Press, 1980).

    Google Scholar 

  18. L. Ceschini, C. Martini, and A. Morri, Tribol. Int. 92, 493 (2015).

    Article  Google Scholar 

  19. H. Chen and A.T. Alpas, Wear 246, 106 (2000).

    Article  Google Scholar 

  20. Z.B. Wang, N.R. Tao, S. Li, W. Wang, G. Liu, J. Lu, and K. Lua, Mater. Sci. Eng. A 352, 144 (2003).

    Article  Google Scholar 

  21. M. Elmadagli and A.T. Alpas, Wear 261, 367 (2006).

    Article  Google Scholar 

  22. T.J. Rupert and C.A. Schuh, Acta Mater. 58, 4137 (2010).

    Article  Google Scholar 

  23. C. Liang, X. Han, T.F. Su, X.X. Lv, and J. An, Trans. Indian Inst. Metals 68, 89 (2014).

    Article  Google Scholar 

  24. T.T. Vuong, P.A. Meehan, D.T. Eadie, K. Oldknow, D. Elvidge, P.A. Bellette, and W.J. Daniel, Wear 271, 287 (2011).

    Article  Google Scholar 

  25. R. Lewis and U. Olofsson, Wear 257, 721 (2004).

    Article  Google Scholar 

  26. S.C. Lim and M.F. Ashby, Acta Metall. 35, 1 (1987).

    Article  Google Scholar 

  27. S.R. Pearson and P.H. Shipway, Wear 330–331, 93 (2015).

    Article  Google Scholar 

  28. E. Broitman, Tribol. Lett. (2017). https://doi.org/10.1007/s11249-016-0805-5.

    Article  Google Scholar 

  29. F.O. Sonmez and A. Demir, J. Mater. Process. Technol. 186, 163 (2007).

    Article  Google Scholar 

  30. G. Srikant, N. Chollacoop, and U. Ramamurty, Acta Mater. 54, 5171 (2006).

    Article  Google Scholar 

  31. S.C. Lim, M.F. Ashby, and J.H. Brunton, Acta Metall. 35, 1343 (1987).

    Article  Google Scholar 

  32. X.D. Niu, D.Q. An, X. Han, W. Sun, T.F. Su, J. An, and R.G. Li, Tribol. Trans. 60, 238 (2017).

    Article  Google Scholar 

  33. M.A. Chowdhury, M.K. Khalil, D.M. Nuruzzaman, and M.L. Rahaman, Int. J. Mech. Mech. Eng. 11, 53 (2011).

    Google Scholar 

  34. A.K. Waghmare and P. Sahoo, Eng. Sci. Technol. Int. J. 18, 463 (2015).

    Article  Google Scholar 

  35. S.K.R. Chowdhury and P. Ghosh, Wear 174, 9 (1994).

    Article  Google Scholar 

  36. R. Ernest, Friction and Wear of Materials (New York: Wiley, 1995).

    Google Scholar 

  37. N. Afrin, D.L. Chen, X. Cao, and M. Jahazi, Scr. Mater. 57, 1004 (2007).

    Article  Google Scholar 

  38. H.C. Thomas, Mechanical Behavior of Materials (Singapore: McGraw-Hill Int., 2000), pp. 324–325.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Natural Science and Engineering Research Council of Canada, the National Major Science and Technology Specialized High-end Foreign Talents Introduction Project (China), Camber Technology Corporation, Suncor Energy, GIW Industries Inc., Shell Canada Ltd., Magna International Inc., and Volant Products Inc. for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Y. Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, A.H.M.A., Li, D.Y., Xu, R. et al. Nonlinearity of Material Loss Versus the Wearing Force. JOM 71, 4274–4283 (2019). https://doi.org/10.1007/s11837-019-03584-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03584-8

Navigation