Skip to main content
Log in

Manufacturing Oxide Dispersion-Strengthened (ODS) Steel Fuel Cladding Tubes Using the Cold Spray Process

  • Advanced Manufacturing for Nuclear Energy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The cold spray materials deposition process has been investigated for manufacturing oxide dispersion-strengthened (ODS) steel fuel cladding tubes. Gas-atomized 14YWT ODS steel powder was used as the feedstock material. A parametric investigation of the cold spray process involving substrate materials of various hardnesses, gas preheat temperatures, and carrier gas compositions was performed to achieve the highest quality deposit. The high-velocity impact of the powder on the substrate led to dissolution of discrete oxide nanoparticles, which subsequently reprecipitated during postdeposition annealing at high temperatures. The tubes were manufactured by deposition on an Al-alloy mandrel substrate and subsequent chemical dissolution of the substrate. A 204-mm-long and 1-mm-thick ODS steel cladding tube was successfully manufactured. The grain growth and distribution of oxide nanoparticles in ferritic steel matrix were identified at elevated temperatures. Overall, the cold spray process holds considerable promise for rapid, cost-effective manufacturing of ODS steel cladding tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.K. Miller, D.T. Hoelzer, E.A. Kenik, and K.F. Russell, Intermetallics 13, 387 (2005).

    Article  Google Scholar 

  2. D.T. Hoelzer, J. Bentley, M.A. Sokolov, M.K. Miller, G.R. Odette, and M.J. Alinger, J. Nucl. Mater. 367–370, 166 (2007).

    Article  Google Scholar 

  3. E. Aydogan, O. El-Atwani, S. Takajo, S.C. Vogel, and S.A. Maloy, Acta Mater. 148, 467 (2018).

    Article  Google Scholar 

  4. D.A. McClintock, M.A. Sokolov, D.T. Hoelzer, and R.K. Nanstad, J. Nucl. Mater. 392, 353 (2009).

    Article  Google Scholar 

  5. V. Sagaradze, V. Shalaev, V. Arbuzov, B. Goshchitskii, Y. Tian, W. Qun, and S. Jiguang, J. Nucl. Mater. 295, 265 (2001).

    Article  Google Scholar 

  6. Y. Wu, J. Ciston, S. Kräemer, N. Bailey, G.R. Odette, and P. Hosemann, Acta Mater. 111, 108 (2016).

    Article  Google Scholar 

  7. S. L. N. Ford, J. Int. Commer. Econ. (2014).

  8. S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, T. Nishida, M. Fujiwara, and K. Asabe, J. Nucl. Mater. 204, 74 (1993).

    Article  Google Scholar 

  9. S. Ukai, T. Yoshitake, S. Mizuta, Y. Matsudaira, S. Hagi, and T. Kobayashi, J. Nucl. Sci. Technol. 36, 710 (1999).

    Article  Google Scholar 

  10. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Acta Mater. 51, 4379 (2003).

    Article  Google Scholar 

  11. V.K. Champagne, The Cold Spray Materials Deposition Process: Fundamentals and Applications (Cambridge: Woodhead, 2007).

    Book  Google Scholar 

  12. B. Maier, M. Lenling, H. Yeom, G. Johnson, S. Maloy, and K. Sridharan, Nucl. Eng. Technol. (2019).

  13. B. Maier, H. Yeom, G. Johnson, T. Dabney, J. Walters, J. Romero, H. Shah, P. Xu, and K. Sridharan, JOM 70, 198 (2018).

    Article  Google Scholar 

  14. B.R. Maier, B.L. Garcia-Diaz, B. Hauch, L.C. Olson, R.L. Sindelar, and K. Sridharan, J. Nucl. Mater. 466, 712 (2015).

    Article  Google Scholar 

  15. H. Yeom, T. Dabney, G. Johnson, B. Maier, M. Lenling, and K. Sridharan, Int. J. Adv. Manuf. Technol. 100, 1373 (2019).

    Article  Google Scholar 

  16. D.J. Park, H.G. Kim, Y. Il Jung, J.H. Park, B.K. Choi, J.H. Yang, and Y.H. Koo, Fusion Eng. Des. 139, 81 (2019).

    Article  Google Scholar 

  17. W.A. Story, D.J. Barton, B.C. Hornbuckle, K.A. Darling, G.B. Thompson, and L.N. Brewer, Materialia 3, 239 (2018).

    Article  Google Scholar 

  18. K. Spencer and M.-X. Zhang, Surf. Coat. Technol. 205, 5135 (2011).

    Article  Google Scholar 

  19. A. Sova, S. Grigoriev, A. Okunkova, and I. Smurov, Surf. Coat. Technol. 235, 283 (2013).

    Article  Google Scholar 

  20. X. Meng, J. Zhang, J. Zhao, Y. Liang, and Y. Zhang, J. Mater. Sci. Technol. 27, 809 (2011).

    Article  Google Scholar 

  21. R.C. Dykhuizen and M.F. Smith, J. Therm. Spray Technol. 7, 205 (1998).

    Article  Google Scholar 

  22. M.R. Rokni, S.R. Nutt, C.A. Widener, V.K. Champagne, and R.H. Hrabe, J. Therm. Spray Technol. 26, 1308 (2017).

    Article  Google Scholar 

  23. M.R. Rokni, C.A. Widener, O.C. Ozdemir, and G.A. Crawford, Surf. Coat. Technol. 309, 641 (2017).

    Article  Google Scholar 

  24. B.A. Bedard, T.J. Flanagan, A.T. Ernst, A. Nardi, A.M. Dongare, H.D. Brody, V.K. Champagne, S.-W. Lee, and M. Aindow, J. Therm. Spray Technol. 27, 1563 (2018).

    Article  Google Scholar 

  25. M.K. Miller, K.F. Russell, and D.T. Hoelzer, J. Nucl. Mater. 351, 261 (2006).

    Article  Google Scholar 

  26. N.J. Cunningham, Y. Wu, A. Etienne, E.M. Haney, G.R. Odette, E. Stergar, D.T. Hoelzer, Y.D. Kim, B.D. Wirth, and S.A. Maloy, J. Nucl. Mater. 444, 35 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by US Department of Energy Grant No. DE-NE0008682.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Sridharan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenling, M., Yeom, H., Maier, B. et al. Manufacturing Oxide Dispersion-Strengthened (ODS) Steel Fuel Cladding Tubes Using the Cold Spray Process. JOM 71, 2868–2873 (2019). https://doi.org/10.1007/s11837-019-03582-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03582-w

Navigation